Year 1 – Week 13 Exam Questions

Mark Scheme

Question 1

	Questi	on	Answer	
1			DR	
1	(i)		$(\sqrt{3})^7$ or $\sqrt{3^7}$ or $3^3 \times \sqrt{3}$ or $3\sqrt{243}$	Ml
			27√3	Al
				[2]
1	(ii)		DR	
			$\frac{\sqrt{2}}{1-\sqrt{2}} \times \frac{1+\sqrt{2}}{1+\sqrt{2}}$	М1
			$= \frac{\sqrt{2}+2}{1-2} \text{ or } \frac{\sqrt{2}+2}{-1} \text{ or } \frac{\sqrt{2}+2}{1+\sqrt{2}-\sqrt{2}-2}$	Al
			$= -2 - \sqrt{2}$ ISW	Al
				[3]

Question 2

2	(i)	$3^2 - 4k = 0$	M1
		$k = \frac{9}{4}$ or 2.25	A1
			[2]
2	(ii)	(3-x)(2+x) > 0 or (x-3)(x+2) < 0 -2 < x < 3 or 3 > x > -2 ISW	M1
			A1
		or $x \in (-2, 3)$	
			[2]

(Questi	on	Answer		
10	(i)		$\frac{3}{8} + \frac{5}{16} + 4p + p = 1$ $p = \frac{1}{16} \text{ or } 0.0625$	M1	
			$p = \frac{1}{16}$ or 0.0625	A1	
				[2]	
10	(ii)		$\frac{3}{8} \times \frac{5}{8}$ or $\frac{3}{8} \times \frac{3}{8}$ seen oe	M1	
			$\frac{3}{8} \times \frac{5}{8} + \frac{5}{8} \times \frac{3}{8} + \frac{3}{8} \times \frac{3}{8}$ oe	M1	
			$=\frac{39}{64}$ or 0.609 (3 sf))	A1	
				[3]	

Question 4

- (Question		Answer	Marks
1	(i)		$\frac{\sin x}{20} = \frac{\sin 45}{16}$	M1*
			$\sin x = \frac{20\sin 45}{16} \left(= \frac{5\sqrt{2}}{8} \right)$	Al
				Dep*M1
			62.1 and 117.9	A1 [4]
1	(ii)		$\frac{1}{2}(BC)(20)\sin(45) = 75\sqrt{2}$	мі
			(BC =) 15 (cm)	Al
				[2]

(Question	Answer	Marks
2	(i)	$\frac{2}{3+x-4}$ or $\frac{2}{3+x+4}$	мı
		$y = \frac{2}{x - 1}$	Al
			[2]
	(ii)	Stretch	B1
		Scale factor $\frac{5}{2}$ parallel to the <i>y</i> -axis	B1 [2]

Question 6

•	Question		Ansv	Marks	
4	(i)		$4\left[x^2-3x\right]+11$		
			$4\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]+11$	a = 4	B1
			[(2) 4]	$(x-3/2)^2$	B1
			$4\left(x-\frac{3}{2}\right)^{2}+2$	<i>c</i> = 2	B1
					[3]
	(ii)		No real roots		B1
					[1]
	(iii)		$r = 0 \Longrightarrow 1$ real root or 1 rep	peated root	M1
			$r < 0 \Longrightarrow 2$ real roots		
			$r > 0 \Rightarrow$ no real roots		Al
					[2]

Question			Answer	Mks
7	(i)	(b)	$\mathbf{a} + \frac{1}{2} (\mathbf{c} - \mathbf{a})$ or $\mathbf{c} + \frac{1}{2} (\mathbf{a} - \mathbf{c})$	M1
			$\mathbf{a} + \frac{1}{2} (\mathbf{c} - \mathbf{a}) \text{or} \mathbf{c} + \frac{1}{2} (\mathbf{a} - \mathbf{c})$ $= \frac{1}{2} (\mathbf{a} + \mathbf{c}) \text{or} \frac{1}{2} \mathbf{a} + \frac{1}{2} \mathbf{c}$	Al
				[2]
	(ii)		$\overrightarrow{OB} = (\mathbf{a} + \mathbf{c})$	М1
			$\Rightarrow \overrightarrow{OP} = \frac{1}{2} \overrightarrow{OB}$ Must see previous line	Al*
			$\Rightarrow P \text{ is midpt of } OB$ or OPB is a straight line and $OP = PB$	dep* Al
			Hence diagonals of //m bisect one another	E1 [4]

(Questi	on	Answer	Marks	AOs	Guidance
11	(i)	(a)	$18 = \left(\frac{8+u}{2}\right)(9)$	мі	3.4	Use of $s = \left(\frac{u+v}{2}\right)t$
			u = -4 therefore the speed of <i>P</i> is 4 (m s ⁻¹)	Al	1.1	AG
	(i)		eg $8 = -4 + 9a$	[2] M1	3.4	Use of $v = u + at$ with their u or $s = vt - \frac{1}{2}at^2$ or $v^2 = u^2 + 2as$ with their u or $s = ut + \frac{1}{2}at^2$ with their u
			$\alpha = \frac{4}{3} (\mathrm{m s^{-2}})$	Al	1.1	Accept 1.33 or better
				[2]		
(Questio	on	Answer	Marks	AOs	Guidance
	(ii)		$0 = -4 + \frac{4}{3}t$	MI	3.1b	Use of $v = u + at$ with $v = 0$ and their a and u
			<i>t</i> = 3	Al	1.1	
			$-s_{\max} = -4t + \frac{1}{2} \left(\frac{4}{3}\right) t^2$	мі	3.4	Use of $s = ut + \frac{1}{2}at^2$ with their $a, u \& t$
		OR	$s_{\text{max}} = 6 < 10$ so <i>P</i> is never at <i>B</i>	A1 [4]	2.2a	Compare with 10 or suitable comment
				мі		Use of $s = ut + \frac{1}{2}at^2$ with their u and a and suitable s
			$-10 = -4t + \frac{1}{2}\left(\frac{4}{3}\right)t^2$	Al		
				мі		Consider $b^2 - 4ac$ or attempt to solve three term quadratic in <i>t</i>
		OR	e.g. det = -24 therefore not possible	Al		Or $36 - 60 \le 0$ therefore not possible
		I	$0 = (\pm 4)^2 + 2\left(\frac{4}{3}\right)s \text{ or } v^2 = (\pm 4)^2 + 2\left(\frac{4}{3}\right)(-10)$	M2		Use of $v^2 = u^2 + 2as$ with their <i>a</i> and <i>u</i> and either $v = 0$ or $s = \pm 10$
			$s = -6$ or $v^2 = -\frac{32}{3}$	Al		
			Suitable conclusion	Al		Dependent on previous A mark