Question	1	2	3	4	5	6	7	8	Total
Marks									
Max Marks	3	3	5	6	8	5	3	13	46

TRY IN EXAM CONDITIONS FIRST (60 MINUTES), THEN USE THE MARK SCHEME TO SCORE AND HELP CORRECT YOUR WORK.

ONCE YOU'VE SELF-ASSESSED YOUR UNDERSTANDING, MAKE USE OF SUBJECT SUPPORT TO HELP YOU COMPLETELY UNDERSTAND ALL QUESTIONS. BE HONEST WITH YOURSELF AND KEEP A GROWTH MINDSET!

1. Rearrange the formula
$$c = \sqrt{\frac{a+b}{2}}$$
 to make *a* the subject.

2.

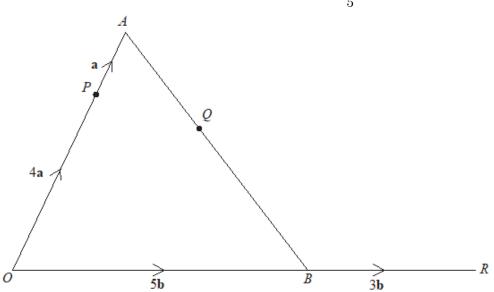
Show that $\frac{5\sqrt{2}+2}{3\sqrt{2}+4}$ can be expressed in the form $m+n\sqrt{2}$, where m and n are integers.

[3 marks]

3. Express each of the following in the form 7^k :

(a)
$$\sqrt[4]{7}$$
 ,

(b)
$$\frac{1}{7\sqrt{7}}$$
, (c)


(c) $7^4 imes 49^{10}$.

(2)

(2)

(1)

4. In the diagram $\overrightarrow{OP} = 4\mathbf{a}$, $\overrightarrow{PA} = \mathbf{a}$, $\overrightarrow{OB} = 5\mathbf{b}$, $\overrightarrow{BR} = 3\mathbf{b}$ and $\overrightarrow{AQ} = \frac{2}{5}\overrightarrow{AB}$.

(a) Find, in terms of *a* and *b*, simplifying your answers,

(i)
$$\overrightarrow{AB}$$

(ii) \overrightarrow{PQ} (1)

(b) Show clearly that points P, Q and R lie on a straight line.

5. Simplify

(a)
$$\frac{(4x)^2 \times 2x^3}{x}$$

,

(b)
$$(36x^{-2})^{-\frac{1}{2}}$$
. (3)

(c)
$$\frac{(4x^5y)^3}{(2xy^2) \times (8x^{10}y^4)}$$
.

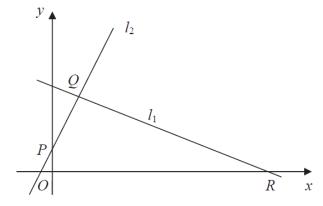
6.

Point C has coordinates (c, 2) and point D has coordinates (6, d).

The line y + 4x = 11 is the perpendicular bisector of *CD*.

Find c and d.

[5 marks]


(2)

(3)

(3)

7. Simplify fully
$$\frac{8a}{3a+6} \times \frac{5a+10}{3a^2} \div \frac{4}{15a^3}$$

The points Q(1,3) and $R(7.0)\,$ lie on the line $l_{\!_1}$, as shown in Figure 2. The length of QR is $a\sqrt{5}$.

(a) Find the value of *a*.

(3)

The line l_2 is perpendicular to l_1 , passes through Q and crosses the y-axis at the point P, as shown in Figure 2. Find

(b)	an equation for l_2 ,	
		(5)
(c)	the coordinates of P,	
		(1)
(d)	the area of ΔPQR .	
		(4)