Q	Marking Instructions	Marks	Typical Solution
1.	Obtains $c^2 = \frac{a+b}{2}$	B1	$c = \sqrt{\frac{a+b}{2}}$
	Valid attempt to rearrange to make a the subject.	M1	$c^2 = \frac{a+b}{c^2}$
	Obtains correct final answer.	A1	$2 \\ 2c^2 = a + b$
		3 marks	$a = 2c^2 - b$

Q2.

Multiplies numerator and denominator by the conjugate surd of the denominator	AO1.1a	M1	$\frac{(5\sqrt{2}+2)(3\sqrt{2}-4)}{(3\sqrt{2}+4)(3\sqrt{2}-4)}$		
Obtains either numerator or denominator correctly, in expanded or simplified form	AO1.1b	A1	$=\frac{30-20\sqrt{2}+6\sqrt{2}-8}{2}$ $=\frac{22-14\sqrt{2}}{2}$		
Constructs rigorous mathematical	AO2.1	R1	$= 11 - 7\sqrt{2}$		
argument to show the required result Only award if they have a completely correct solution, which is clear, easy to follow and contains no slips	NMS means No Method Shown. This question is a 'show that' question so you MUST show your method. If you have just stated the correct answer but with no working e.g. you				
NMS = 0	just typed it into you calculator then you score no marks.				
Total		3			

YEAR 1 | MATHEMATICS | MIXED EXAM QUESTIONS – WEEK 3 | MARK SCHEME

Q	Marking Instructions	Marks	Typical Solution
3. (a)	Correct answer (Accept $7^{0.25}$).	B1	
		1 mark	$\sqrt[3]{l} = l^4$
3. (b)	Clear attempt to use indices rules.	M1	$1 \ _{-} \ 1 \ _{-} \ _{-} \frac{1}{2}$
	• E.g. $7 \times 7^{\frac{1}{2}} = 7^{\frac{3}{2}}$ or $\frac{1}{7^a} = 7^{-a}$		$\frac{1}{7\sqrt{7}} - \frac{1}{7 \times 7^{\frac{1}{2}}} - \frac{1}{7^{\frac{3}{2}}} - 7$
	Correct final answer (accept $7^{-1.5}$).	A1	
		2 marks	
3. (c)	Attempt to change base of 7 or 49 and simplify.	M1	$7^4 imes 49^{10} = 7^4 imes (7^2)^{10} = 7^4 imes 7^{20} = 7^{24}$
	• e.g. $49^{10} = (7^2)^{10} = 7^{20}$		
	Correct final answer.	A1	
		2 marks	

YEAR 1 | MATHEMATICS | MIXED EXAM QUESTIONS – WEEK 3 | MARK SCHEME

Q	Marking Instructions	Marks	Typical Solution
4. (a) (i)	Correct answer.	B1	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = 5\mathbf{b} - 5\mathbf{a}$
		1 mark	
4. (a) (ii)	$\mathbf{a} + \frac{2}{5} \times \text{ their answer to (a)(ii)}$	M1	$\overrightarrow{PQ} = \overrightarrow{PA} + \overrightarrow{AQ}$
	Correct final answer.	A1	$=\mathbf{a}+\frac{2}{5}\overrightarrow{AB}$
		2 marks	$= \mathbf{a} + \frac{2}{2}(5\mathbf{b} - 5\mathbf{a})$
			$= \mathbf{a} + 2\mathbf{b} - 2\mathbf{a}$
			$= 2\mathbf{b} - \mathbf{a}$
4. (b)	Attempt to write \overrightarrow{PR} in terms of a and b .	M1	$\overrightarrow{PQ} = 2\mathbf{b} - \mathbf{a}$
	Obtains $\overrightarrow{PR} = -4\mathbf{a} + 8\mathbf{b}$	A1	$\overrightarrow{PR} = -\overrightarrow{OP} + \overrightarrow{OR}$
	States that $\overrightarrow{PR} = 4\overrightarrow{PQ}$ (or $\overrightarrow{PQ} = 1\overrightarrow{PR}$) and implies that this		$= -4\mathbf{a} + 8\mathbf{b}$
	States that $r_R = 4r_Q$ (or $r_Q = -r_R$) and implies that this 4	Al	$\therefore \overrightarrow{PR} = 4\overrightarrow{PQ}$
	demonstrates they are on a straight line.	3 marks	
	Note: This may be seen numerically, e.g. $8\mathbf{b} - 4\mathbf{a} = 4(2\mathbf{b} - \mathbf{a})$		Since PQ and PK are parallel and share a common point, they must lie on a straight line

YEAR 1 | MATHEMATICS | MIXED EXAM QUESTIONS – WEEK 3 | MARK SCHEME

Q	Marking Instructions	Marks	Typical Solution
5. (a)	Obtains correct coefficient of 32.	B1	$(4x)^2 \times 2x^3$ $16x^2 \times 2x^3$ $32x^5$
	Obtains correct final answer	B1	$\frac{1}{x} = \frac{1}{x} = \frac{1}{x} = \frac{1}{x} = \frac{1}{x}$
		2 marks	
5. (b)	Sight of 6 or $\frac{1}{36^{\frac{1}{2}}}$ or $\frac{1}{\sqrt{36}}$	M1	$\left(36x^{-2}\right)^{-\frac{1}{2}} = 36^{-\frac{1}{2}} \times \left(x^{-2}\right)^{-\frac{1}{2}} = \frac{1}{36^{\frac{1}{2}}} \times x = \frac{1}{6}x$
	$\frac{1}{6}$ seen in final answer.	A1	
	Fully correct answer.	A1	
		3 marks	
5. (c)	Obtains coefficient of 4.	B1	$(4x^5y)^3$ $4^3 \times (x^5)^3 \times y^3$
	Correctly applies indices laws to either numerator or denominator.	M1	$\frac{1}{(2xy^2) \times (8x^{10}y^4)} = \frac{1}{16x^{11}y^6}$
	• e.g. $(4x^5y)^3 = 4^3 \times (x^5)^3 \times y^3$ or $(2xy^2) \times (8x^{10}y^4) = 16x^{11}y^6$		$=\frac{64x^{15}y^3}{16x^{11}b^6}$
	Correct final answer (OE) (Accept $rac{4x^4}{y^3}$)	A1	$16x^4y^3$ $= 4x^4y^{-3}$
		3 marks	

Marking Instructions	AO	Marks	Typical Solution
Forms an equation for gradient of $CD = \frac{1}{4}$ or $-\frac{1}{4}$ of the form	∆O3 1a	M1	$\frac{d-2}{c-2} = \frac{1}{4}$
difference in y over difference in x	A00.10		6-c 4
(or vice versa = 4 or -4)			4d - 8 = 6 - c
Obtains a correct equation for $c \& d$	AO1.1b	A1	c + 4d = 14
Forms an equation for the mid- point of CD lying on $y + 4x = 11$	AO3.1a	M1	$\frac{2+a}{2} + 4\left(\frac{c+6}{2}\right) = 11$
Obtains correct equation for <i>c</i> & <i>d</i> (any correct form)	AO1.1b	A1	4c + d = -4
Solves for <i>c</i> and <i>d</i> CAO	AO1.1b	A1	c = -2 $d = 4$
Total		5	

Q	Marking Instructions	Marks	Typical Solution
7.	Attempt to simplify to a single fraction Must see evidence of: • Simplification of indices (numerator and denominator) • Attempt to manipulate $\div \frac{4}{15a^3}$ into $\times \frac{15a^3}{4}$ (OE) Attempt to factorise using $(a + 2)$ on both numerator and denominator. Correct final answer (OE) (accept $16\frac{2}{3}a^2$)	MI M1 A1 3 marks	$\frac{8a}{3a+6} \times \frac{5a+10}{3a^2} \div \frac{4}{15a^3} = \frac{8a}{3a+6} \times \frac{5a+10}{3a^2} \times \frac{15a^3}{4}$ $= \frac{120a^4(5a+10)}{12a^2(3a+6)}$ $= \frac{10a^2(5a+10)}{3a+6}$ $= \frac{50a^2(a+2)}{3(a+2)}$ $= \frac{50a^2}{3}$

Q	Marking Instructions	Marks	Typical Solution
8. (a)	Attempt to calculate QR using $\sqrt{\left(x_2^2-x_1^2 ight)^2+\left(y_2^2-y_1^2 ight)^2}$	M1	Length of $QR: a\sqrt{5} = \sqrt{(7-1)^2 + (0-3)^2}$
	Obtains $a\sqrt{5} = \sqrt{(7-1)^2 + (0-3)^2}$ (OE)	A1	$a\sqrt{5} = \sqrt{45}$
	Correct final answer.	A1	$a\sqrt{5} = 3\sqrt{5}$
		3 marks	$\therefore a = 3$
8. (b)	Attempt to calculate gradient of QR using $\displaystyle \frac{y_2 - y_1}{x_2 - x_1}$	M1	$m_{QR} = \frac{0-3}{7-1} = -\frac{1}{2}$
	Correctly calculates gradient of QR .	A1	$\therefore m_{\perp} = 2$
	Attempt to calculate gradient of l_2 using $-\frac{1}{m_{QR}}$ for their gradient	M1*	:. Using $Q(1,3)$: $y-3 = 2(x-1)$
	of QR.		
	Attempt to form equation for l_2 using $(1,3)$ and their gradient for l_2 .	dM1	
	Correct equation for l_2 in any form.	A1	
	Note: Other possible forms include $y = 2x + 1$, $2x - y + 1 = 0$	5 marks	
8. (c)	Correct coordinates for <i>P</i> .	B1	When $x = 0$, $y - 3 = 2(-1)$
		1 mark	y = 1
			P(0,1)
8. (d)	Attempt to calculate PQ using <i>their</i> value for $P(0,1)$.	M1	$ PQ = \sqrt{(1-0)^2 + (3-1)^2} = \sqrt{5}$
	Obtains $PQ = \sqrt{5}$	A1	
	Attempt to calculate area using $rac{1}{2} imes$ their $PQ imes$ their $3\sqrt{5}$	M1	Area $=$ $\frac{1}{2} \times 3\sqrt{5} \times \sqrt{5} = 7.5$
	Correct final answer from correct working.	A1	
		4 marks	

YEAR 1 | MATHEMATICS | MIXED EXAM QUESTIONS – WEEK 3 | MARK SCHEME