YEAR 1 | MATHEMATICS | MIXED EXAM QUESTIONS – WEEK 4 | MARK SCHEME

Q1.										
	Circles correct answer	AO1.1b	B1	12		Q2.				
	Total		1			С	ircles correct answer	AO1.1b	B1	a ¹⁹ b ⁴
Q3.										1
		equation	an approp on to find t n vector o	he	AO1.1a	M1	Let position vector of E $\frac{a\mathbf{i} + b\mathbf{j} + 7\mathbf{i} + 9\mathbf{j}}{2} = 3\mathbf{i} + 6\mathbf{j}$	-		
		Finds t vector	he correct of B	t position	AO1.1b	A1	$a\mathbf{i} + b\mathbf{j} = -\mathbf{i} + 3\mathbf{j}$			
				Total		2			_	
	(b)	the veo	he compo ctor AB ar gth using		AO1.1a	M1	$\overrightarrow{AB} = -8\mathbf{i} - 6\mathbf{j}$		_	
			joras' theo	brem			$\left \overrightarrow{AB}\right = \sqrt{8^2 + 6^2} = 10$			
		Obtain 'their' A	s correct l \B		AO1.1b	A1F				
				Total		2			_	

Q	Marking Instructions	Marks	Typical Solution
Q4.	Attempt to express 8 or 16 as powers of 2.	M1	$2^{a^2} = 8^a \times 16$
	• e.g 8 seen as 2^3 or 16 seen as 2^4 .		$2^{a^2} = (2^3)^a \times 2^4$
	2^{3a} and 2^4 seen.	B1	$2^{a^2} = (2^{a^2})^{-1} \times 2^{a^2}$ $2^{a^2} = 2^{3a+4}$
	Obtains $a^2 - 3a - 4 = 0$	A1	$2^{\circ} = 2$ $\therefore a^2 = 3a + 4$
	Both correct values for <i>a</i> .	A1	$0 = a^2 - 3a - 4$
		4 marks	
			0 = (a - 4)(a + 1)
			$a = 4, \ a = -1$

Q	Marking instructions	AO	Marks	Typical solution
4	marking monucions	AU	Warks	i ypical solution
5	Selects an appropriate method by finding the midpoint of <i>AB</i> and the gradient of <i>AB</i>	AO3.1a	M1	Mid-point of $AB = (3, 2)$ Gradient of $AB = 2$ Hence gradient of perpendicular bisector
	Finds the correct gradient of the perpendicular bisector of <i>AB</i> ft 'their' gradient of <i>AB</i>	AO1.1b	A1F	$= -\frac{1}{2}$ Equation of perpendicular bisector is $y-2 = -\frac{1}{2}(x-3)$ $p+6 = -\frac{1}{2}(p-3)$
	Forms an appropriate equation and substitutes the given coordinate into 'their' equation to find <i>p</i>	AO1.1a	M1	p = -3
	Finds the correct value of <i>p</i>	AO1.1b	A1	
	Total		4	

5 (Alt)	Selects an appropriate method by using the distance between two points formula to form an expression for the distance between A or B and the point with coordinates $(p, p + 8)$	AO3.1a	M1	Distances are $\sqrt{(p-1)^2 + (p+10)^2}$ $\sqrt{(p-5)^2 + (p+2)^2}$ $\sqrt{(p-1)^2 + (p+10)^2} = \sqrt{(p-5)^2 + (p+2)^2}$
	Forms a correct equation using equal distances between the points A and B and the given point.	AO1.1b	A1	$(p-1)^{2} + (p+10)^{2} = (p-5)^{2} + (p+2)^{2}$ $2p^{2} + 18p + 101 = 2p^{2} - 6p + 29$ $p = -3$
	Expands brackets correctly to solve the equation	AO1.1a	M1	
	Finds the correct value of <i>p</i>	AO1.1b	A1	
	Total		4	

YEAR 1 | MATHEMATICS | MIXED EXAM QUESTIONS – WEEK 4 | MARK SCHEME

Q6.

(a)	Attempts $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ or similar	M1
	$\overrightarrow{AB} = 5\mathbf{i} + 10\mathbf{j}$	A1
		(2)
(b)	Finds length using 'Pythagoras' $ AB = \sqrt{(5)^2 + (10)^2}$	M1
	$ AB = 5\sqrt{5}$	A1ft
		(2)

Q7.

		DR				
(i)		$(\sqrt{3})^7$ or $\sqrt{3^7}$ or $3^3 \times \sqrt{3}$ or $3\sqrt{243}$	Ml	1.1a	or any correct intermediate step using $$ or $3^3 \times 3^{\frac{1}{2}}$	If this step is not seen, M0A0
		27√3	Al	1.1	or <i>a</i> = 27, <i>b</i> = 3	
			[2]			
(ii)		DR				
		$\frac{\sqrt{2}}{1-\sqrt{2}} \times \frac{1+\sqrt{2}}{1+\sqrt{2}}$	мı	l.la		If this step is not seen, M0A0
		$=\frac{\sqrt{2}+2}{1-2}$ or $\frac{\sqrt{2}+2}{-1}$ or $\frac{\sqrt{2}+2}{1+\sqrt{2}-\sqrt{2}-2}$	Al		A1 for correct num OR denom	
		$= -2 - \sqrt{2}$ ISW	A1 [3]	1.1	or $-2 + (-1\sqrt{2})$ or $c = -2$, $d = -1$ and $e = 2$	Allow –(2 + $\sqrt{2}$)

YEAR 1 | MATHEMATICS | MIXED EXAM QUESTIONS – WEEK 4 | MARK SCHEME

Q8.

(i)	(a)	c-a oe	B1 [1]	1.2		
(i)	(b)	$a + \frac{1}{2}(c - a)$ or $c + \frac{1}{2}(a - c)$	Ml	3.1a	$a + \frac{1}{2}$ their (a) or $c - \frac{1}{2}$ their (a)	
		$=\frac{1}{2}(\mathbf{a}+\mathbf{c})$ or $\frac{1}{2}\mathbf{a}+\frac{1}{2}\mathbf{c}$	A1 [2]	1.1b	Correct ans without wking: M1A1	
(ii)		$\overrightarrow{OB} = (\mathbf{a} + \mathbf{c})$	Ml	21-	$\overrightarrow{PB} = \mathbf{a} + \frac{1}{2} (\mathbf{c} - \mathbf{a}) \text{ or } \mathbf{a} + \frac{1}{2} \text{ their (i)(a)}$ or $\mathbf{c} + \frac{1}{2} (\mathbf{a} - \mathbf{c})$	or $\overrightarrow{PB} = c - \frac{1}{2}$ their (i)(a)
		$\Rightarrow \overrightarrow{OP} = \frac{1}{2} \overrightarrow{OB}$ Must see previous line $\Rightarrow P \text{ is midpt of } OB \\ \text{ or } OPB \text{ is a straight line and } OP = PB \\ \text{Hence diagonals of } //m \text{ bisect one another}$	A1* dep* A1 E1 [4]	1.1 2.1 2.2a	(= $\frac{1}{2}$ (a+c) oe), ft their (i)(a) NB $\overrightarrow{PB} = \frac{1}{2}$ (a + c) without justification: M0A0A0E0 $\Rightarrow \overrightarrow{PB} = \overrightarrow{OP}$ dep M1A1A1	or similar with BP or BO

YEAR 1 | MATHEMATICS | MIXED EXAM QUESTIONS – WEEK 4 | MARK SCHEME

(i)	$\overrightarrow{BC} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$	B1	1.1	
	$ \begin{pmatrix} 4 \\ -2 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \mathbf{d} - \mathbf{a} = \overrightarrow{AD} $	M1	3.1a	soi
	$\overrightarrow{OD} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$	A1 [3]	1.1	
(ii)	$\overrightarrow{OM} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$	B1	1.1	
	(4) $\overrightarrow{AM} = \overrightarrow{OM} - \overrightarrow{OA} = \begin{pmatrix} 6\\ 3 \end{pmatrix}$	M1	1.1	soi
	$\overrightarrow{AM} = \sqrt{6^2 + 3^2} = 3\sqrt{5}$	A1	2.2a	Accept 6.71
		[3]		