Year 1 | Mathematics | Week 5 Exam Questions

Question	1	2	3	4	5	6	7	8	9	Total
Marks										
Max Marks	6	6	7	4	4	3	5	6	5	46

Complete the following questions under exam conditions.

Time allowed: 50 minutes

Check and correct using the Mark Scheme.

Don't forget to drop into subject support with any remaining queries!

Question 1

(a)

Solve the inequality 2-x < 1+3(x-2). [3]

(b)

Solve the following.

$$-6 < 2x - 1 < 7$$
 [3]

Question 2

(i) Solve these simultaneous equations.

$$3x + 4y = 18$$

 $7x - 3y = 5$ [4]

(ii) Draw a rough sketch of the lines to demonstrate graphically the solution to part (i). [2]

Question 3

- (i) Simplify the equation $\frac{x+a}{x} + \frac{x-2}{4} = 0$, leaving your answer in the form $(x+p)^2 = q$ where p is an integer and q is given in terms of the constant a. [3]
- (ii) Hence write down the range of values of *a* for which the equation has real roots. [2]
- (iii) Using your answer to part (i), solve the equation when a = -1, giving your answers exactly. [2]

Question 4

A car, P, accelerates from rest from a point O.

P accelerates uniformly at 2ms⁻².

- (i) Write down the formula for the displacement, s metres, of P at time t seconds after leaving O. [1]
- (ii) Using appropriate units, find the time taken for P to reach a speed of 90 km h^{-1} . [3]

Question 5

Find the equation of the line which is perpendicular to the line with equation 2x + 3y = 4 and which passes through the point (3, -1). [4]

Question 6

The coordinates of A and B are (1, 5) and (-3, 7) respectively.

- (i) Calculate the **exact** length of AB. [2]
- (ii) Find the coordinates of the midpoint of AB. [1]

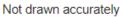
Question 7

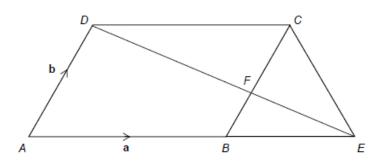
(i)	Solve algebraically the simultaneous equations $y = 3 + 5x - x^2$ and $y = x + 7$.	[4]
-----	---	-----

(ii) Interpret your answer geometrically. [1]

Question 8

Fou	Four points have coordinates $A(-5, -1)$, $B(0, 4)$, $C(7, 3)$ and $D(2, -2)$.				
(i)	Using gradients of lines, prove that ABCD is a parallelogram.	[2]			
(ii)	Using lengths of lines, prove further that ABCD is a rhombus.	[2]			
(iii)	Prove that ABCD is not a square.	[2]			


Question 9


ABCD is a parallelogram.

ABE is a straight line and AB:BE=3:2 .

BC and ED intersect at F.

$$\overrightarrow{AB} = \mathbf{a} \text{ and } \overrightarrow{AD} = \mathbf{b}$$
.

(a) Work out \overrightarrow{ED} in terms of **a** and **b**.

Give your answer in its simplest form.

(3)

Deduce \overrightarrow{EF} in terms of **a** and **b**. (b)

(2)

(5 marks)