Year 12 Week 7 Mixed Exam Questions

(Mostly Edexcel via DrFrostMaths)

Question	1	2	3	4	5	6	7	8	Total
Marks									
Max Marks	2	4	5	4	5	3	5	4	32

TRY IN EXAM CONDITIONS FIRST (35 MINUTES), THEN USE THE MARK SCHEME TO SCORE AND HELP CORRECT YOUR WORK.

1. Express

$$\frac{2}{3-x} + \frac{3}{1+x}$$

as a single fraction in its simplest form.

2. Express $3x^2 - 5x + 1$ in the form $a(x + b)^2 + c$

3. Solve the equation

$$x^6 + 26x^3 - 27 = 0$$

(5 marks)

(2 marks)

(4 marks)

4. Solve the equation

 $2^{2x+5} - 7(2^x) = 0$

giving your answer to 2 decimal places.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(4 marks)

5. Solve the equation

$$2y^{\frac{1}{2}} - 7y^{\frac{1}{4}} + 3 = 0$$

(5 marks)

Question 6

The line l_1 has equation 3x + 5y - 2 = 0.

The line l_2 is perpendicular to l_1 and passes through the point (3,1). Find the equation of l_2 in the form y = mx + c, where m and c are constants.

(3 marks)

7. A car moves along a horizontal straight road, passing two points A and B. At A the speed of the car is 15 m s⁻¹. When the driver passes A, he sees a warning sign W ahead of him, 120 m away. He immediately applies the brakes and the car decelerates with uniform deceleration, reaching W with speed 5 m s⁻¹. At W, the driver sees that the road is clear.

He then immediately accelerates the car with uniform acceleration for 16 s to reach a speed of $V \text{ m s}^{-1}$ (V > 15). He then maintains the car at a constant speed of $V \text{ m s}^{-1}$. Moving at this constant speed, the car passes *B* after a further 22 s.

A speed-time graph to illustrate the motion of the car as it moves from A to B is sketched below.

The distance from A to B is 1 km.

Find the value of V.

(5 marks)

8. (a) 4 10 m 18 m 18 m

A particle *P* is moving along a straight line with constant acceleration. Initially the particle is at *O*. After 9 s, *P* is at a point *A*, where OA = 18 m (see diagram) and the velocity of *P* at *A* is 8 m s⁻¹ in the direction OA.

The initial speed of *P* is 4 m s $^{-1}$.

Find the acceleration of *P*.

(2 marks)

8. (b)

A particle accelerates uniformly whilst moving on a straight line from A to B. A and B are 240m apart.

The particle takes 18 seconds to travel from A to B.

At *B*, the velocity of the particle is $6ms^{-1}$.

Find the velocity of the particle at A.

(1 mark)

8. (c)

A particle is moving along a straight line with constant deceleration $2.5ms^{-2}$. At t = 0, the velocity of the particle is $8ms^{-1}$.

Find the time taken for the velocity of the particle to become $3ms^{-1}$.

Question 1

$\frac{11-x}{(3-x)(1+x)}$	
$\frac{2(1+x)+3(3-x)}{(3-x)(1+x)}$	B1
$\frac{11-x}{(3-x)(1+x)}$ or isw	B1

Question 2

$3\left(x-\frac{5}{6}\right)^2-\frac{13}{12}$	
$3(x^2 - \frac{5}{2}x) + 1$	B1
$3[(x-\frac{5}{2})^2-\frac{25}{2}]+1$	B1
6 36 5 13	M1
$3(x-\frac{1}{6})^2 - \frac{1}{12}$	A1

Question 3

x = -3 or x = 1

$k = x^3$	*M1
$k^2 + 26k - 27 = 0$	A1
k = -27, 1	A1
	DM1
x = -3, 1	A1

Question 4

$$x = -2.19$$

 $32(2^{2x}) - 7(2^{x}) = 0$ Deals with power 5 correctly giving ×32 M1
So, $2^{x} = \frac{7}{32}$ $2^{x} = \frac{7}{32}$ or $y = \frac{7}{32}$ or awrt 0.219
A1 or dM1 $x \log 2 = \log\left(\frac{7}{32}\right)$ or $x = \frac{\log\left(\frac{7}{32}\right)}{\log 2}$ or $x = \log_{2}\left(\frac{7}{32}\right)$ A valid method for solving $2^{x} = \frac{7}{32}$ X = -2.192645...A1 or dM1 x = -2.192645...

Question 5

 $y = \frac{1}{16}$ or y = 81

$\int dt = \frac{1}{\sqrt{4}}$	M1*
Let $y^2 = x$ $2x^2 - 7x + 3 = 0$	
(2x-1)(x-3) = 0	M1dep*
$x = \frac{1}{2}, x = 3$	A1
$y = \left(\frac{1}{2}\right)^4, y = 3^4$	M1dep*
$y = \frac{1}{16}, y = 81$	A1

Question 6

$$y = \frac{5}{3}x - 4$$

(b) Gradient of perp. line $= \frac{-1}{n(-\frac{3}{5})^n}$ (Using $-\frac{1}{m}$ with the *m* from part (a)) $y - 1 = n(\frac{5}{3})^n(x-3)$ $y = \frac{5}{3}x - 4$ (Must be in this form... allow $y = \frac{5}{3}x - \frac{12}{3}$ but not $y = \frac{5x - 12}{3}$) A1 (3)

Question 7

$V = 28 \,\mathrm{m \, s^{-1}}$

(c)		
(-/	$120 + \frac{1}{2}(V+5).16 + 22V = 1000$	M1 <u>B1</u> A1
	Solve: $30V = 840 \implies V = \underline{28}$	DM1 A1
		(5)

Question 8

(a)

 $a = \frac{4}{3}$

eg $8 = -4 + 9a$	M1	3.4	Use of $v = u + at$ with their u or $s = vt - \frac{1}{2}at^2$ or $v^2 = u^2 + 2as$ with their u or $s = ut + \frac{1}{2}at^2$ with their u
$a = \frac{4}{3} (m s^{-2})$	A1	1.1	Accept 1.33 or better

(b)

20.7 ms^{-1} (1 mark)

(c)

2 seconds (1 mark)