Q	Marking Instructions	Marks	Typical Solution
1.	Identifying y -intercept as -2.	B1	c = -2
	Attempt to find gradient using $m = \frac{y_2 - y_1}{x_2 - x_1}$.	M1	$m = \frac{18 - (-2)}{4 - 0} = 5$
	Correct final answer.	A1	$\therefore y = 5x - 2$
		3 marks	

Q	Marking Instructions	Marks	Typical Solution
2.	Marking instructionsObtains $15x + 6y = 12$ and $8x - 6y = 34$ (allow one numerical slip) or Obtains $20x + 8y = 16$ and $20x - 15y = 85$ (allow one numerical slip) Attempt to eliminate one variable and solve for x or y .Obtains $x = 2$ or $y = 3$ (following correct working) Obtains fully correct answer (from fully correct working)	Marks M1 M1 A1 A1 4 marks	Typical Solution $5x + 2y = 4 (1)$ $4x - 3y = 17 (2)$ $(1) \times 3 15x + 6y = 12 (3)$ $(2) \times 2 8x - 6y = 34 (4)$ $(3) + (4) :$ $23x = 46$ $x = 2$ Substitute $x = 2$ into (1) : 5(2) + 2y = 4 $2y = -6$ $y = -3$

Q	Marking Instructions	Marks	Typical Solution
3.	Correct use of trigonometric ratios.	B1	$\sin 749 - 2.6$
	Attempt to rearrange and solve for <i>l</i> . Correct final answer to at least 1 decimal place.	M1 A1 3 marks	$\sin 74^\circ = \frac{l}{l}$ $l = \frac{2.6}{\sin 74^\circ}$ $l = 2.70 \text{ m}$

Q	Marking Instructions	Marks	Typical Solution
4. (a)	Attempt to expand brackets on LHS.	M1	4(p+r) = 7r + 11
	Collects like terms.	M1	4p + 4r = 7r + 11
	Fully correct solution.	A1	4p = 3r + 11
		3 marks	3r + 11
			p =
4. (b)	Attempts to clear the fraction on RHS: $y(x-2) = m + x$.	M1	m = m + x
	Expands brackets correctly $yx - 2y = m + x$.	A1	$y = \frac{y}{x-2}$ $y(x-2) = m+x$
	Attempts to collect like terms and factorise.	dM1	yx - 2y = m + x
	Correct final answer.	A1	yx - x = m + 2y
		4 marks	x(y-1) = m + 2y
			$x = \frac{m+2y}{y-1}$

Q	Marking Instructions	Marks	Typical Solution
5.	Attempt to find gradient using $m = \frac{y_2 - y_1}{x_2 - x_1}$.	M1	$m = \frac{7-2}{8-(-2)} = \frac{1}{2}$
	Correctly finds perpendicular gradient from <i>their</i> gradient of AB .	M1	$m_{\perp} = -2$
	Correct final answer in correct form.	A1	$\therefore y = -2x + 7$
		3 marks	y + 2x - 7 = 0

Q	Marking Instructions	Marks	Typical Solution
6.	Uses a valid method to combine LHS into a single fraction.	M1	2 3 1
	Obtains $4y - 6 + 3y + 3 = (y + 1)(2y - 3)$ (OE)	A1	$\frac{1}{y+1} + \frac{1}{2y-3} = 1$
	Rearranges their expression to obtain a quadratic equation with one side equal to zero.	dM1	$\frac{2(2y-3)+3(y+1)}{(y+1)(2y-3)} = 1$
	Obtains both correct values.	A1	4y - 6 + 3y + 3 = (y + 1)(2y - 3)
		4 marks	$7y - 3 = 2y^2 + 2y - 3y - 3$
			$0 = 2y^2 - 8y$
			$\therefore y = 0, 4$

Q	Marking Instructions	Marks	Typical Solution
7. (a)	Attempt to find gradient using $m = \frac{y_2 - y_1}{x_2 - x_1}$.	M1	$m_1 = \frac{8-2}{11-(-1)} = \frac{1}{2}$
	Obtains $m = \frac{1}{2}$. Attempts to form a straight line equation using <i>their</i> 'm' and $(-1,2)$. Correct equation in the correct form.	A1 M1 A1 4 marks	Using, $(-1, 2)$, $y - 2 = \frac{1}{2}(x + 1)$ $y = \frac{1}{2}x + \frac{5}{2}$
7. (b)	Correctly finds perpendicular gradient from <i>their</i> gradient of l_1 . Correct equation for l_2 : $y = -2x + 20$ (OE) Attempt to equate l_1 with l_2 and rearrange to find <i>x</i> -coordinate of intersection. Obtains $x = 7$ Substitutes back in to either equation and obtains $y = 6$, and explicitly states the coordinate of S .	M1 A1 A1 A1 5 marks	$m_{\perp} = -2$ For l_2 , using $(10,0)$: y = -2(x - 10) y = -2x + 20 Intersection of l_1 and l_2 : $\frac{1}{2}x + \frac{5}{2} = -2x + 20$ $\frac{5}{2}x = \frac{35}{2}$ x = 7 Using l_1 , when $x = 7$, $y = \frac{1}{2} \times 7 + \frac{5}{2} = 6$. $\therefore S(7,6)$

Q	Marking Instructions	Marks	Typical Solution
7. (c)	Attempt to use Pythagoras' Theorem with <i>their</i> R and S .	M1	$R(10,0), \ \ S(7,6)$
	(may be seen as $RS^2 = (10-7)^2 + (0-6)^2$)		$RS = \sqrt{(10-7)^2 + (0-6)^2}$
	Note: Check working carefully as answer given in question.		$=\sqrt{45}$
	Correct simplified answer (sight of $\sqrt{45}$ not explicitly required)	A1	$= 3\sqrt{5}$
		2 marks	
7. (d)	Identifies that base of triangle is PQ and height is RS (may be in the form of a diagram). Attempts to calculate the length of PQ using Pythagoras' Theorem. Correct value for PQ . Correct value for area.	B1 M1 A1 A1 4 marks	P Height = $RS = 3\sqrt{5}$ Base = $PQ = \sqrt{(11 - (-1))^2 + (8 - 2)^2} = 6\sqrt{5}$ Area = $\frac{1}{2} \times 6\sqrt{5} \times 3\sqrt{5}$ = 45

Q	Marking Instructions	Marks	Typical Solution
8	Attempt to find the equation of l using $m = -2$ and $(3,5)$.	M1	l: y-5 = -2(x-3)
	Attempt to write an expression for the length of AB using A and <i>their</i> equation for <i>l</i> .	M1	y = -2x + 11
	Obtains $AB^2 = (x_1 - 3)^2 + (6 - 2x)^2$ OE	Al	Define B as (x_1, y_1) .
	Note: AB^2 may be unsimplified, but y must be eliminated for A1.		$\dots g_1 = -2x_1 + 11$
	Equates <i>their</i> expression for AB^2 with $(6\sqrt{5})^2$ and attempts to	dM1	$AB^2 = (x_1 - 3)^2 + (y_1 - 5)^2$
	solve the resulting quadratic.		$AB^{2} = (x_{1} - 3)^{2} + (-2x_{1} + 11 - 5)^{2}$
	Both correct <i>x</i> -values found.	A1	$AB^{2} = (x_{1} - 3)^{2} + (6 - 2x)^{2}$
	Both correct coordinates of B found.	A1	$AB^{2} = x_{1}^{2} - 6x_{1} + 9 + 36 - 24x_{1} + 4x_{1}^{2}$
		6 marks	$AB^2 = 5x_1^2 - 30x_1 + 45$
			Since $AB^2 = \left(6\sqrt{5}\right)^2 = 180$,
			$180 = 5x_1^2 - 30x_1 + 45$
			$0 = 5x_1^2 - 30x_1 - 135$
			$0 = x_1^2 - 6x_1 - 27$
			$\therefore x_1 = -3,9$
			Using $y = -2x + 11$,
			When $x = -3$, $y = -2(-3) + 11 = 17$
			When $x = 9$, $y = -2(9) + 11 = -7$
			\therefore Possible coordinates of B are $(-3,17)$ and $(9,-7)$

Q	Marking Instructions	Marks	Typical Solution
9. (a)	Attempt to calculate the length of AB using Pythagoras' Theorem.	M1	$AC = \sqrt{(8-5)^2 + (2-1)^2}$
	Obtains $AC = \sqrt{10}$ (OE)	A1	$=\sqrt{10}$
	Attempts to formulate an expression for the length of AB using Pythagoras' Theorem.	M1	$AB = \sqrt{(p-5)^2 + (7-1)^2}$
	Equates their AB with their AC . Note: Marks are not awarded for simply stating that $AB = 2AC$.	dM1	$= \sqrt{p^2 - 10p + 25 + 36}$ $= \sqrt{p^2 - 10p + 61}$
	Simplifies to obtain $p^2 - 10p + 21 = 0$ (OE)	A1	
	Valid attempt to solve <i>their</i> quadratic.	dM1	AB = 2AC
	Obtains $p = 3$ and $p = 7$	A1 7 marks	$\therefore \sqrt{p^2 - 10p + 61} = 2\sqrt{10}$
		7 1101103	$p^2 - 10p + 61 = 4 \times 10$
			$p^2 - 10p + 21 = 0$
			p = 3, 7
B2. (b)	Attempt to find x by substituting $y = 7$ into equation of the line.	M1	Given that $y = 7$, ,
	Alternative: Verify that $p=7$ gives $y=7$ and that $p=3$ does not.		7 = 3x - 14
	Obtain $x = 7$	A1	x = 7
	Uses midpoint formula with their value for B: $\left(\frac{x_1 + x_1}{x_1 + x_1}, \frac{y_1 + y_2}{x_1 + x_2}\right)$.	M1	B is at $(7,7)$.
		A1	Midpoint of $AB = \left(\frac{7+5}{2}, \frac{7+1}{2}\right) = (6,4)$
	Obtains (0,4) as final answer.	4 marks	