Q	Marking Instructions	Marks	Typical Solution
1.	Attempt to factorise numerator.	M1	$3x^2 - 7x + 4$ $(x - 1)(3x - 4)$
	Correctly factorises denominator.	A1	$\frac{1}{x^2 - 1} = \frac{1}{(x + 1)(x - 1)}$
	Correct final answer.	A1	$=\frac{3x-4}{2}$
		3 marks	x + 1

Q	Marking Instructions	Marks	Typical Solution
2. (a)	Attempt to expand brackets and collect like terms. Correct answer OE (e.g. $x < 2.8$)	M1 A1 2 marks	$3(x-2) < 8 - 2x$ $3x - 6 < 8 - 2x$ $5x < 14$ $x < \frac{14}{5}$
2. (b)	Obtains critical values. Attempt to obtain correct inequalities by sketching graph. Correct inequality (OE).	B1 M1 A1 3 marks	(2x-7)(1+x) < 0 Critical values: $x = \frac{7}{2}$, $x = -1$ $\therefore -1 < x < \frac{7}{2}$ (3.5, 0) (-1, 0)
2. (c)	Correct answer from <i>their</i> inequalities in (a) and (b)	B1ft 1 mark	$-1 < x < \frac{14}{5}$

Year 1 | Pure Mathematics | Peer Marked Task 2 | Mark Scheme

Q	Marking Instructions	Marks	Typical Solution
Q 3.	Marking InstructionsAttempt to substitute for x or y to get an equation in 1 variable only. e.g. $y = 2x + 1$ or $x = \frac{y - 1}{2}$ Obtain correct 3-term quadratic: $x^2 - 6x + 8 = 0$ Valid attempt to solve <i>their</i> 3-term quadratic. One pair of correct values for x and y Both pairs of x and y values correct.	Marks M1* A1 dM1 A1 A1	Typical Solution $x^2 - 3y + 11 = 0$ (1) $2x - y + 1 = 0$ $y = 2x + 1$ (2) Substitute (2) into (1): $x^2 - 3(2x + 1) + 11 = 0$ $x^2 - 6x - 3 + 11 = 0$ $x^2 - 6x + 8 = 0$ $(x - 2)(x - 4) = 0$ $x = 2$ or $x = 4$
	Note: For final A1 mark It must be clear which x and y values are linked together.	5 marks	x = 2 or $x = 4When x = 2, y = 2(2) + 1 = 5When x = 4, y = 2(4) + 1 = 9Solutions are x = 2 and y = 5 or x = 4 and y = 9$

Year 1 | Pure Mathematics | Peer Marked Task 2 | Mark Scheme

Q	Marking Instructions	Marks	Typical Solution
4. (a)	Correct answer.	B1	$10^{p} = 0.1$
		1 mark	$10^{p} - 1$
			$10^{\circ} = \frac{1}{10}$
			p = -1
4. (b)	Attempt to square root $25k^2$ or square both sides.	M1	$25k^2 = 225$
	Obtains $k^2 = 9$ (or $k = 3$ only)	A1	$k^2 = 9$
	Obtains $k = \pm 3$	A1	$k = \pm 3$
		3 marks	
4. (c)	Attempt to apply power laws.	M1	$t^{-\frac{1}{3}} - \frac{1}{1}$
	e.g. $t^{\frac{1}{3}} = 2$ or $\frac{1}{1} = \frac{1}{1}$		2
	$-\frac{1}{t^3}$ 2		$t^{\overline{3}} = 2$
	Correct answer.	A1	$t = 2^3$
		2 marks	t = 8

Q	Marking Instructions	Marks	Typical Solution
5.	Attempt to isolate $\sqrt{l^2 - r^2}$ Note: Award M1 If both sides are correctly squared before isolating $\sqrt{l^2 - r^2}$ Squares both sides to obtain $\frac{9V^2}{\pi^2 r^4} = l^2 - r^2$ Attempts to make l^2 or l the subject. Obtains correct final answer (OE) $e.g. \ l = \pm \sqrt{\left(\frac{3V}{\pi r^2}\right)^2 + r^2}$ NOTE: / represents a length in the question, so could argue / > 0	M1* A1 dM1 A1 4 marks	$V = \frac{1}{3}\pi r^2 \sqrt{l^2 - r^2}$ $\frac{3V}{\pi r^2} = \sqrt{l^2 - r^2}$ $\frac{9V^2}{\pi^2 r^4} = l^2 - r^2$ $l^2 = \frac{9V^2}{\pi^2 r^4} + r^2$ $l = \pm \sqrt{\frac{9V^2}{\pi^2 r^4} + r^2}$

Q	Marking Instructions	Marks	Typical Solution
6.	Attempt to factorise and complete the square.	M1	$5x^{2} + 20x + 6 = 5\left[x^{2} + 4x\right] + 6$
	Given $a(x+b)^2 + c$:		$=5[(x+2)^2-4]+6$
	Obtains $a = 5$	B1	
	Obtains $b = 2$	B1	$=5(x+2)^2-20+6$
	Fully correct answer	A1	$=5(x+2)^2-14$
		4 marks	

Year 1 | Pure Mathematics | Peer Marked Task 2 | Mark Scheme

Q	Marking Instructions	Marks	Typical Solution
7. (a)	p = 15	B1	$(2,2)$ $\left(1+p,7+q\right)$
	q = -3	B1	$(0,2) = \left(\frac{2}{2}, \frac{2}{2}\right)$
	Note: Accept $(15, -3)$.	2 marks	$\frac{1+p}{2} = 8 \qquad \frac{7+q}{2} = 2$
			2 - 2 - 2
			$p - 10 \qquad q = -3$
			<i>C</i> (15, -3)
7. (b)	Obtains $m_{_{AC}} = -rac{5}{7}$ (may be implied by later use of $m_{_{\perp}}$)	B1	$m_{_{AC}}=\frac{-3-2}{15-8}=-\frac{5}{7}$
	$m_{\perp} = -\frac{1}{their} m_{_{AC}}$	M1*	$\therefore m_{\perp} = \frac{7}{5}$
	Attempt to find equation of l using $y - y_1 = m(x - x_1)$, with (8,2)	dM1	$\therefore y-2=\frac{7}{5}(x-8)$
	and their $m_{_{\!\!\!\perp}}$.		5y - 10 = 7x - 56
	Obtains $y - 2 = \frac{7}{5}(x - 8)$ OE.	A1	0 = 7x - 5y - 46
	Correct answer in correct form (accept $0 = -7x + 5y + 46$).	A1	
		5 marks	
7. (c)	Substitutes $y = 7$ into <i>their</i> equation for <i>l</i> .	M1	<i>l</i> meets <i>AB</i> where $0 = 7x - 5y - 46$ intersects $y = 7$
	Correct answer OE (e.g. $11\frac{4}{2}$)	Δ1	$\therefore 7x - 5(7) - 46 = 0$
	· · 7 ·	2 marks	7x = 81
	Note: Do <u>not</u> accept decimal approximations (e.g. 11.57).		$x = \frac{81}{7}$

Q	Marking Instructions	Marks	Typical Solution
8	Attempt to simply $a + b + c$ to a single fraction.	M1	$3 9 - \sqrt{17} 9 + \sqrt{17}$
	Obtain $a + b + c = 6$	A1	$a = \frac{1}{2}, b = \frac{1}{4}, c = \frac{1}{4}$
			$a+b+c = \frac{3}{2} + \frac{9-\sqrt{17}}{4} + \frac{9+\sqrt{17}}{4}$
			$=\frac{6+9-\sqrt{17}+9+\sqrt{17}}{4}$
			$=\frac{24}{4}$
	Obtains $bc = \frac{9^2 - 17}{16}$ (OE) (may be unsimplified)	M1	= 6
	Obtains $abc = 6$ from valid working	A1	$abc = \frac{3}{2} \times \frac{9 - \sqrt{17}}{4} \times \frac{9 + \sqrt{17}}{4}$
	Note: Check working carefully as it may already be known that the correct value is 6 from $a + b + c$.	4 marks	$=\frac{3\times(9^2-17)}{2\times4\times4}$
			$=\frac{3\times 64}{32}$
			= 6

Q	Marking Instructions	Marks	Typical Solution
9. (a)	Note: Answer given in question – check working carefully.		$x^{2} - 4ky + 5k = 0 (2) \qquad 2x + y = 1$
	Makes y the subject of the linear equation and substitutes into the second equation.	M1	y = 1 - 2x (2)
	Correctly rearranges to obtain $x^2 + 8kx + k = 0$	A1	Substituting (2) into (1) gives:
		2 marks	$x^{2} - 4k(1 - 2x) + 5k = 0$ $x^{2} - 4k + 8kx + 5k = 0$
			$x^2 + 8kx + k = 0$
	Use of $b^2 - 4ac = 0$	M1	Equal roots $\Rightarrow b^2 - 4ac = 0$
	Note: Condone errors in substitution but no x 's.		$\therefore (8k)^2 - 4(1)(k) = 0$
	Obtains $8k^2 - 4k$ (Note: need not be an equation at this stage.)	A1	$64k^2 - 4k = 0$
	Obtains $k = \frac{1}{16}$ only.	A1	$16k^2 - k = 0$
	10		k(10k-1) = 0
		3 marks	Since k is non-zero, $k = \frac{1}{16}$
9. (b)	Substitutes <i>their</i> value for k into $x^2 + 8kx + k = 0$	M1	$x^2 + 8kx + k = 0$
	Obtains correct <i>x</i> -value.	A1	$x^{2} + 8\left(\frac{1}{16}\right)x + \frac{1}{16} = 0$
	Obtains correct y -value (in addition to correct x -value).	A1	$x^{2} + \frac{1}{x}x + \frac{1}{x} = 0$
		3 marks	$ \begin{array}{ccc} 2 & 16 \\ 16x^2 + 8k + 1 = 0 \end{array} $
			$(4x+1)^2 = 0$
			$\therefore x = -\frac{1}{4}$
			When $x = -\frac{1}{4}, y = 1 + 2\left(\frac{1}{4}\right) = \frac{3}{2}$