Question	1	2	3	4	5	6	7	8	9	10	Total
Marks											
Max	3	4	5	4	9	8	8	6	8	9	64

Marking Instructions	AO	Marks	Typical Solution
Multiplies numerator and denominator by the conjugate surd of the denominator	AO1.1a	M1	$\frac{5\sqrt{3}+3}{3\sqrt{3}+4} \times \frac{3\sqrt{3}-4}{3\sqrt{3}-4}$
Obtains either numerator or denominator correctly, in expanded or simplified form	AO1.1b	A1	$\frac{45 - 20\sqrt{3} + 9\sqrt{3} - 12}{11}$
Constructs rigorous mathematical argument to show the required result	AO2.1	R1	$\frac{33-11\sqrt{3}}{11}$
Only award if they have a completely correct solution, which is clear, easy to follow and contains no slips NMS = 0			3 – √3 a=3, b= -1
			Total 3 marks

	Marking Instructions	AO	Marks	Typical Solution
(a) (i)	States correct value of p	AO1.2	B1	$p = \frac{1}{2}$
(ii)	States correct value of q	AO1.2	B1	q = -3
(b)	Uses valid method to find x , PI	AO1.1a	M1	$\frac{1}{2} + 2x + 1 = -3$
	Obtains correct x , ACF	AO1.1b	A1	$x = \frac{-9}{4}$
				Total 4 marks

(a)
$$p(4) = (4)^3 - 13(4) - 12$$

must attempt $p(4)$ NOT long division

М1

 \Rightarrow x -4 is factor

shown = 0 plus statement

Α1

(b)
$$x - 4 \quad x^2 + bx + c$$

Full long division, comparing coefficients or by inspection either b = 4 or c = 3

M1

 $x^2 + 4x + 3$ obtained

or M1 A1 for either x + 3 or x + 1 clearly found using factor theorem

A1

$$x + 3$$
 $x - 4$ $x + 1$

CSO; must be seen as a product of 3 factors

NMS full marks for correct product

SC B1 for x + 3 x - 4or (x + 3)(x + 1)()

or (x + 3)(x + 4)(x - 1) NMS

A1

$(3x-2)^4 = 81x^4 - 216x^3 + 216x^2 - 96x + 16$	M1 A1		Attempt binomial expansion, including attempt a coeffs. Obtain one correct, simplified, term		
	A1		Obtain a further two, simplified, terms		
	A1	4	Obtain a completely correct expansion		
		4			

	Marking Instructions	AO	Marks	Typical Solution
(a) (i)	States correct radius CAO	AO1.2	B1	Radius = √10
(ii)	States correct centre CAO	AO1.2	B1	C is (4, -1)
(b)	Finds gradient of the line through the points <i>P</i> and 'their' <i>C</i> (as found in part (a))	AO3.1a	M1	Gradient $CP = \frac{2-4}{3+1} = \frac{-2}{4}$
	Condone one sign error			
	Correct tangent gradient obtained from 'their' <i>CP</i> gradient	AO3.1a	M1	So tangent gradient = 2
	Uses a correct form for the equation of a straight line with correct coordinates of <i>P</i> and 'their' tangent gradient	AO1.1a	M1	y - 2 = 2(x - 3)
	States correct final answer in required form	AO1.1b	A1F	2x - y = 4
	(ax+by=c)			
	FT from 'their' C found in part (a)			
(c)	Uses Pythagoras' theorem for length CQ		M1	
	Obtains CQ	AO1.1a	M1	CQ=3
	Compares with radius of circle and reasons that point must be inside since CQ <r< td=""><td>AO1.1b</td><td>A1F</td><td>3>√10 Point is inside the circle</td></r<>	AO1.1b	A1F	3>√10 Point is inside the circle
	FT 'their' QC and 'their' radius found in part (a)			
				Total 10 marks

(a)
$$(k-2)^2 - 4 \times (2k-7)(k-3)$$

discriminant – condone one slip –
condone omission of brackets

M1

$$k^2 - 4k + 4 - 4(2k^2 - 6k - 7k + 21)$$

Α1

No real roots condition; f(k)< 0 must appear before final line

B1

$$7k^2 - 48k + 80 > 0$$

AG (all working correct with no missing brackets etc)

A1cso

(b)
$$7k^2 - 48k + 80 = (7k - 20)(k - 4)$$

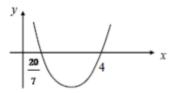
correct factors

(or roots unsimplified) $\frac{48 \pm x}{14}$

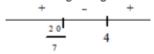
M1

critical values are 4 and $\frac{20}{7}$ $accept \frac{56}{14}, \frac{40}{14} etc here$

Α1



sketch or sign diagram including values



М1

$$k < \frac{20}{20}$$
 or $k > 4$

Take Geir final line as their answer

fractions must be simplified here, do not allow 'and' between the inequalities

A1cao

(i)	$\sin^2 x = 1 - \cos^2 x \Rightarrow 2\cos^2 x + \cos x - 1 = 0$	844	_	For transferming to a greatestic in case of
(1)		M1		For transforming to a quadratic in cos x
	Hence $(2\cos x - 1)(\cos x + 1) = 0$	M1		For solution of a quadratic in cos x
	$\cos x = \frac{1}{2} \Rightarrow x = 60^{\circ}$	A1		For correct answer 60°
	$\cos x = -1 \Rightarrow x = 180^{\circ}$	A1	4	For correct answer 180° [Max 3 out of 4 if any extra answers present in range, or in radians] SR answer only is B1, B1 justification – ie graph or substitution is B2, B2
(ii)	$\tan 2x = -1 \Rightarrow 2x = 135 \text{ or } 315$ Hence $x = 67.5^{\circ} \text{ or } 157.5^{\circ}$	M1 M1 A1 A1	4	For transforming to an equation of form tan2x = k For correct solution method, i.e. inverse tan followed by division by 2 For correct value 67.5 For correct value 157.5
	OR $\sin^2 2x = \cos^2 2x$ $2\sin^2 2x = 1$ $2\cos^2 2x = 1$ $\sin 2x = \pm \frac{1}{2}\sqrt{2}$ $\cos 2x = \pm \frac{1}{2}\sqrt{2}$ Hence $x = 67.5^\circ$ or 157.5°	M1 M1 A1 A1		Obtain linear equation in cos 2x or sin 2x Use correct solution method For correct value 67.5 For correct value 157.5 [Max 3 out of 4 if any extra answers present in range, or in radians] SR answer only is B1, B1 justification – ie graph or substitution is B2,

[8]

Method 1 (Substituting a = 3b into second equation at some stage)					
Using a law of logs correctly (anywhere) e.g. $log_3 ab = 2$	M1				
Substitution of $3b$ for a (or a/3 for b) e.g. $log_3 3b^2 = 2$	M1				
Using base correctly on correctly derived $log_3 p = q$ e.g. $3b^2 = 3^2$	M1				
First correct value $b = \sqrt{3}$ (allow 3%)	A1				
Correct method to find other value (dep. on at least first M mark)	M1				
Second answer $a = 3b = 3\sqrt{3} \text{ or } \sqrt{27}$	A1				
Method 2 (Working with two equations in log ₃ a and log ₃ b)					
" Taking logs" of first equation and " separating" $\log_3 a = \log_3 3 + \log_3 b$	M1				
$(=1 + \log_3 b)$					
Solving simultaneous equations to find log $_3\emph{a}$ or log $_3\emph{b}$	M1				
$[\log_3 a = 1\frac{1}{2}, \log_3 b = \frac{1}{2}]$					
Using base correctly to find a or b	M1				
Correct value for a or b $a = 3 \sqrt{3}$ or $b = \sqrt{3}$	A1				
Correct method for second answer, dep. on first M; correct second answer					
[Ignore negative values]	M1;A1				
	[6]				

(a)
$$AB: m = \frac{2-7}{8-6}, (=-\frac{5}{2})$$
 B1
Using $m_1 m_2 = -1: m_2 = \frac{2}{5}$ M1

$$y-7=\frac{2}{5}(x-6)$$
, $2x-5y+23=0$ (o.e. with integer coefficients) M1 A1

(b) Using x = 0 in the answer to (a), $y = \frac{23}{5}$ or 4.6

(c) Area of triangle = $\frac{1}{2} \times 8 \times \frac{23}{5} = \frac{92}{5}$ (o.e) e.g. $\left(18\frac{2}{5}, 18.4, \frac{184}{10}\right)$ M1 A1

(2) [8]

(4)

(2)

10.

(a)
$$(x+2k)^2$$
 or $(x+\frac{4k}{2})^2$ M1

 $(x \pm F)^2 \pm G \pm 3 \pm 11k$

(where F and G are <u>any</u> functions of k, not involving x $(x+2k)^2 - 4k^2 + (3+11k)$ Accept unsimplified equivalents such as

 $\left(x + \frac{4k}{2}\right)^2 - \left(\frac{4k}{2}\right)^2 + 3 + 1 lk, \text{ and i.s.w. if necessary.}$ (3)

b) Accept part (b) solutions seen in part (a)

$$4k^{2}-11k-3=0$$
 $(4k+1)(k-3)=0$ $k=...,$ M1

[Or, 'starting again', $b^2 - 4ac = (4k)^2 - 4(3+11k)$ and proceed to k = ...]

 $-\frac{1}{4}$ and 3 (Ignore any inequalities for the first 2 marks in (b)). A1

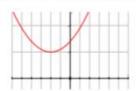
Using $b^2 - 4ac < 0$ for no real roots, i.e. " $4k^2 - 11k - 3$ " < 0, to establish inequalities involving their <u>two</u> critical values m and n (even if the inequalities are wrong, e.g. k < m, k < n).

 $-\frac{1}{4} < k < 3$ (See conditions below) Follow through their critical values.

The final A1ft is still scored if the answer m < k < n follows k < m, k < n.

<u>Using x instead of k in the final answer</u> loses only the 2^{nd} A mark, (condone use of x in earlier working).

(c)



Shape (seen in (c))

Minimum in correct quadrant, <u>not</u> touching the x-axis, <u>not</u> on the y-axis, and there must be no other minimum or maximum 0, 14) or 14 on y-axis.

Allow (14, 0) marked on y-axis.

.b. Minimum is at (-2,10), (but there is no mark for this).

B1

M1

A1ft

B1

B1

(3) [10]