Marked by:

YEAR 1 | APPLIED MATHEMATICS | PEER MARKED TASK 3

Question	1	2	3	4	5	6	Total
Marks							
Max Marks	4	6	7	13	10	11	51

1. A man of mass 70 kg stands on the floor of a lift which is moving with an upward acceleration of 0.3 ms^{-2} . Calculate the magnitude of the force exerted by the floor on the man.

- 2. A car of mass $900 \, \text{kg}$ is travelling in a straight line on a horizontal road. The driving force acting on the car is $600 \, \text{N}$, and a resisting force of $240 \, \text{N}$ opposes the motion.
 - (a) Show that the acceleration of the car is $0.4 \, {\rm m s}^{-2}$.
 - (b) Calculate the time and the distance required for the speed of the car to increase from 5 ms^{-1} to 9 ms^{-1} .
- 3. A small stone is projected vertically upwards from a point O with a speed of $19.6 \,\mathrm{ms}^{-1}$. Modelling the stone as a particle moving freely under gravity.
 - (a) Find the greatest height above *O* reached by the stone.
 - (b) Find the length of time for which the stone is more than $14.7 \,\mathrm{m}$ above O.
- 4. A car is moving on a straight horizontal road. At time t = 0, the car is moving with speed 20 ms^{-1} and is at the point A. The car maintains the speed of 20 ms^{-1} for 25 s. The car then moves with constant deceleration 0.4 ms^{-2} , reducing its speed from 20 ms^{-1} to 8 ms^{-1} . The car then moves with constant speed 8 ms^{-1} for 60 s. The car then moves with constant acceleration until it is moving with speed 20 ms^{-1} at the point B.
 - (a) Sketch a velocity-time graph to represent the motion of the car from A to B.
 (b) Find the time for which the car is decelerating.
 (c) Given that the distance from A to B is 1960 m,
 - (c) find the time taken for the car to move from A to B.

[8 marks]

[4 marks]

[2 marks]

[4 marks]

[2 marks]

[5 marks]

YEAR 1 | APPLIED MATHEMATICS | PEER MARKED TASK 3

5.		Two athletes, Sam and Tom, are in a race. Sam runs at a constant speed of $8.8 \mathrm{ms}^{-1}$. When Sam is $180 \mathrm{m}$ from the finishing tape, Tom is $10 \mathrm{m}$ behind him. At this moment, Tom, who was running at $8.5 \mathrm{ms}^{-1}$, begins to accelerate at a constant rate of $0.2 \mathrm{ms}^{-2}$. When his speed reaches $9.3 \mathrm{ms}^{-1}$, he ceases to accelerate and continues to run with this speed.	
	(a) (i)) Find the time taken for Tom to accelerate from $8.5{ m ms}^{-1}$ to $9.3{ m ms}^{-1}.$	1 0 1
	(ii) Find the distance Tom runs during this time.	[2 marks]
	(b)	Determine	[2 marks]
	(i)) which athlete wins the race;	
	(::		[5 marks]
	(11) now far anead of the other athlete the winning athlete is when he passes the finishing tape.	
6.		A particle P is projected vertically upwards, from horizontal ground, with speed $ m 8.4ms^{-1}.$	
	(a)	Show that the greatest height above the ground reached by P is $3.6\mathrm{m}$.	
	(b)	A particle Q is projected vertically upwards, from a point 2 m above the ground, with speed $u \text{ ms}^{-1}$. The greatest height above the ground reached by Q is also 3.6 m .	[3 marks]
	(0)		[2 marks]
		It is given that P and Q are projected simultaneously.	
	(c)	Show that, at the instant when P and Q are at the same height, the particles have the same	
		speed and are moving in opposite directions.	[6 marks]