Class:

Marked by:

Year 1 | Pure Mathematics | Peer Marked Task 5

Question	1	2	3	4	5	6	7	8	9	10	Total
Marks											
Max	3	4	5	4	9	8	8	6	8	9	64

1. Show that $\frac{5\sqrt{3}+3}{3\sqrt{3}+4}$ can be expressed in the form $a + b\sqrt{3}$, where a and b are integers to be stated.

			[3 marks]			
2.	(a)	Write down the value of p and the value of q given that:				
		(i) $\sqrt{3} = 3^{P}$				
			[1 mark]			
		(ii) $\frac{1}{27} = 3^q$				
			[1 mark]			
	(b)	Find the value of <i>x</i> for which $\sqrt{3} \times 3^{2x+1} = \frac{1}{27}$				
			[2 marks]			
3.	Th	e polynomial p(x) is given by $p(x) = x^3 - 13x - 12$.				
	(a)	Use the Factor Theorem to show that $x - 4$ is a factor of $p(x)$.				
			[2 marks]			
(b)		Show that $p(x)$ can be expressed as the product of three linear factors.				
_						
4	. Find	the binomial expansion of $(3x - 2)^4$.	[4 marks]			
5.	Th	e circle with equation $(X - 4)^2 + (Y + 1)^2 = 10$ has centre C.				
	(a)	(i) Write down the radius of the circle.				
			[1 mark]			
		(ii) Write down the coordinates of <i>C</i> .	[1 mark]			
			(- ·····)			
	(b)	The point $P(2, 2)$ lies on the size				
	(b)	The point <i>P</i> (3, 2) lies on the circle.				
		Find the equation of the tangent to the circle at <i>P</i> , giving your answer in the form $ax + by = c$	[4 marks]			
	(c)	Determine whether the point $Q(1, -1)$ lies inside or outside the circle, fully justifying your answer.				
	(-)		[3 marks]			

6. The quadratic equation $(2k-7)x^2 - (k-2)x + (k-3) = 0$ has no real roots.	
(a) Show that $7k^2 - 48k + 80 > 0$.	[4 marks]
(b) Find the possible values of k .	[4 marks]
7. Solve each of the following equations in the interval [0,180]	
(i) $2sin^2x = 1 + \cos x$	
(ii) $sin 2x = -\cos 2x$	[4 marks] [4 marks]
8. Given that a and b are positive constants, solve the simultaneous equations $a = 3b$	[4 marks]
$\log_3 a + \log_3 b = 2$	
Give your answers as exact values.	
	[6 marks]
9. The points A and B have coordinates (6,7) and (8,2) respectively.The line I passes through the point A and is perpendicular to the line AB.	
a) Find an equation for I in the form $ax+by+c=0$, where a, b and c are integers	[4 marks]
Given that I intersects the y-axis at the point C, find	
b) the coordinates of C,	[2 marks]
c) the area of triangle OCB, where O is the origin.	[2 marks]
10. $f(x) = x^2 + 4kx + (3 + 11k)$, where k is a constant.	
a) Express $f(x)$ in the form $(x+p)^2+q$, where p and q are constants to be found in terms of k.	[3 marks]
Given that the equation $f(x) = 0$ has no real roots,	
b) Express find the set of possible values of k.	[4 marks]
Given that <i>k</i> =1, c) sketch the graphs of y=f(x), showing the coordinates of any point at which the graph crosses a coord	inate axis. [2 marks]