紜
 Objective

- To write quadratic expressions in completed square form: $a(x+b)^{2}+c$

(D) Examples

3.1e. Express the following in the form $(x+a)^{2}+b$, where a and b are rational numbers.
(a) $x^{2}-6 x+4$

$$
\begin{aligned}
x^{2}-6 x+4 & =(x-3)^{2}-9+4 \\
& =(x-3)^{2}-5
\end{aligned}
$$

(b) $y^{2}+5 y-6$

3.2e. Write $2 x^{2}+7 x+9$ in the form $a(x+b)^{2}+c$, where a, b and c are rational numbers.

Factorise the first two terms.

$$
2 x^{2}+7 x+9=2\left[x^{2}+\frac{7}{2} x\right]+9
$$

$\underset{\text { square }}{\text { Complete the }} \longrightarrow=2\left[\left(x+\frac{7}{4}\right)^{2}-\frac{49}{16}\right]+9$

Expand

$$
=2\left(x+\frac{7}{4}\right)^{2}-\frac{49}{8}+\frac{72}{8}
$$

$$
=2\left(x+\frac{7}{4}\right)^{2}+\frac{23}{8}
$$

3.1p. Express the following in the form $(x+a)^{2}+b$, where a and b are rational numbers.
(a) $x^{2}+4 x+11$
\qquad
\qquad
\qquad
(b) $y^{2}-3 y+8$
\qquad
3.2p. Write $3 x^{2}+2 x-5$ in the form $p(x+q)^{2}+r$, where p, q and r are rational numbers.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3.3e. Write $6-3 x-x^{2}$ in completed square form.

$$
\begin{aligned}
6-3 x-x^{2} & =-x^{2}-3 x+6 \\
& =-\left[x^{2}+3 x\right]+6 \\
& =-\left[\left(x+\frac{3}{2}\right)^{2}-\frac{9}{4}\right]+6 \\
& =-\left(x+\frac{3}{2}\right)^{2}+\frac{9}{4}+\frac{24}{4} \quad \text { Factorise to get a positive } x^{2} \text { term. } \\
& =\frac{33}{4}-\left(x+\frac{3}{2}\right)^{2}
\end{aligned}
$$

3.3p. Write $9+5 y-y^{2}$ in completed square form.
3.4e. Given that $x^{2}+10 p x-7 \equiv(x+a)^{2}+b$, express a and b in terms of p.

$$
x^{2}+10 p x-7=(x+5 p)^{2}-25 p^{2}-7
$$

$\therefore a=5 p$ and $b=-25 p^{2}-7$
3.4p. Given that $x^{2}+6 q x+3 \equiv(x+c)^{2}+d$, express c and d in terms of q.
\qquad
\qquad
\qquad
\qquad

