COMPLETING THE SQUARE

Objective

• To write quadratic expressions in completed square form: $a(x+b)^2 + c$

Examples

- **3.1e.** Express the following in the form $(x+a)^2 + b$, where a and b are rational numbers.
- $x^2 6x + 4$ (a)

$$x^{2} - 6x + 4 = (x - 3)^{2} - 9 + 4$$

= $(x - 3)^{2} - 5$

- **3.1p.** Express the following in the form $(x+a)^2 + b$, where a and b are rational numbers.
 - $x^2 + 4x + 11$ (a)

- (b) $y^2 + 5y - 6$
- $y^2 + 5y 6 = \left(y + \frac{5}{2}\right)^2 \frac{25}{4}$ $= \left(y + \frac{5}{2}\right)^2 - \frac{49}{4}$
- $y^2 3y + 8$ (b)

Write both parts as fractions with a common denominator.

- **3.2e.** Write $2x^2 + 7x + 9$ in the form $a(x+b)^2 + c$, where a,b and c are rational numbers.
- **3.2p.** Write $3x^2 + 2x 5$ in the form $p(x+q)^2 + r$, where p,q and r are rational numbers.

Factorise the first two terms.

$$2x^{2} + 7x + 9 = 2\left[x^{2} + \frac{7}{2}x\right] + 9$$

$$= 2\left[\left(x + \frac{7}{4}\right)^{2} - \frac{49}{16}\right] + 9$$

$$= 2\left[x + \frac{7}{4}\right]^{2} - \frac{49}{8} + \frac{72}{8}$$
Expand
$$= 2\left[x + \frac{7}{4}\right]^{2} + \frac{23}{8}$$

3.3e. Write $6-3x-x^2$ in completed square form.

$$6-3x-x^2 = -x^2-3x+6$$

$$= -\left[x^2+3x\right]+6$$

$$= -\left[\left(x+\frac{3}{2}\right)^2-\frac{q}{4}\right]+6$$

$$= -\left(x+\frac{3}{2}\right)^2+\frac{q}{4}+\frac{24}{4}$$
Expand and simplify
$$= \frac{33}{4}-\left(x+\frac{3}{2}\right)^2$$

3.3p. Write $9+5y-y^2$ in completed square form.

3.4e. Given that $x^2 + 10px - 7 \equiv (x+a)^2 + b$, express a and b in terms of p.

3.4p. Given that
$$x^2 + 6qx + 3 \equiv (x+c)^2 + d$$
, express c and d in terms of q .

		,	١2		
$x^2 + 10$	px - 7 =	(x+5)	p) -	$25p^{2}$	-7

:.
$$a = 5p$$
 and $b = -25p^2 - 7$