- To solve quadratic equations by factorising, using the formula and directly using your c alculator.
(D) Examples
4.1e. Solve the following equations by factorising.
(a) $(4 x-9)(5-3 x)=0$
$\begin{aligned} 4 x-9 & =0 \quad \text { or } \\ 4 x & =9 \\ x & =\frac{9}{4}\end{aligned}$

$$
x=\frac{9}{4}
$$

If you are comfortable doing this in your head, there is no need

$$
5=3 x
$$ to show working.

$$
x=\frac{5}{3}
$$

(b) $5 w=2 w^{2}$

$$
\begin{aligned}
5 w & =2 w^{2} & & \text { might be a solution } \\
0 & =2 w^{2}-5 w & & \text { (rearrange and } \\
0 & =w(2 w-5) & & \text { factorise instead). }
\end{aligned}
$$

$$
w=0 \quad \text { or } \quad 2 w-5=0
$$

$$
2 w=5
$$

$$
w=\frac{5}{2}
$$

(c) $15 t^{2}+25 t=40$

4.1p. Solve the following equations by factorising.
(a) $\quad(1-6 x)(8 x-5)=0$
(b) $7 w-4 w^{2}=0$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) $4 t^{2}=38 t-90$
\qquad

KEY FACT

The solution of $a x^{2}+b x+c=0$, where $a \neq 0$, is given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

(D) Examples
4.2e. Find the exact solutions to the equation

$$
\begin{gathered}
2 x+7=(3 x+2)^{2} \\
2 x+7=(3 x+2)^{2} \\
2 x+7=9 x^{2}+12 x+4 \\
0=9 x^{2}+10 x-3 \\
\therefore \quad x=\frac{-10 \pm \sqrt{10^{2}-4 \times 9 \times(-3)}}{2 \times 9} \\
=\frac{-10 \pm \sqrt{208}}{18} \quad \text { Leave your answer } \\
2
\end{gathered}
$$

4.3e. Use your calculator to find the exact solutions to the equation

$$
7+2 y^{-1}=3 y
$$

$$
7+2 y^{-1}=3 y
$$

$$
7 y+2=3 y^{2} \quad B C \text { stands for ' } B C^{\prime}
$$

$$
0=3 y^{2}-7 y-2 \quad \text { calculator. It indicates }
$$

$$
y=\frac{7 \pm \sqrt{73}}{6} \quad(B C) \quad \text { to the reader why }
$$

4.3e. Use your calculator to find the exact solutions to the equation

$$
3 y+13+\frac{6}{y}=0
$$

4.4e. Solve the equation $x^{2}-2 p x=8 p^{2}$, giving your answer in terms of p.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\therefore \quad x=7 k$ or $x=3 k$

