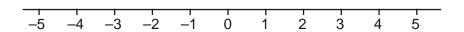


Basic Inequalities Revision

List the integer values of n for

$$3 \le n < 8$$
.


[2]

2. (i) Solve.

$$4x - 5 < 9$$

[2]

(ii) Represent your solution to part (a)(i) on the number line below.

[1]

3. List the integer values, n, which satisfy

$$3 < n \le 7$$
.

.....

[2]

Solve this inequality. (b) (i)

$$3x - 2 > 4$$

[2]

Show your solution to part (i) on the number line below. (ii)

[1]

List the integer values of x such that

$$-2 \le x < 3$$

- (b) Solve the inequality

$$x^2 > 64$$

Answer

(2)


Basic Inequalities Revision

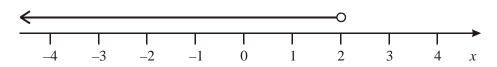
5. (a) Solve the inequality $3(x-2) \le 9$

Answer

(b) The inequality $x \le 3$ is shown on the number line below.

Draw another inequality on the number line so that only the following integers satisfy both inequalities

$$\{-2, -1, 0, 1, 2, 3\}$$


(1)

(3)

6. (a) Solve the inequality $2x + 3 \ge 1$

Answer(2)

(b) Write down the inequality shown by the following diagram.

Answer

(1)

(c) Write down all the integers that satisfy both inequalities shown in parts (a) and (b).

.....

Answer

(1)

7. Solve.

$$15 + 4n \le 3 - 2n$$

.....

Basic Inequalities Revision

8. Solve.

$$5n + 3 < 2n - 9$$

[2]

9. (a) A mathematics teacher says

I am thinking of an integer, I double the integer and add 1. The result is **less than** –7.

What is the **largest** integer the teacher could have thought of?

Answer(2)

(b) x and y are integers.

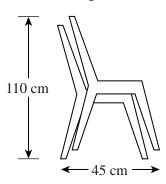
$$0 < x \le 3$$

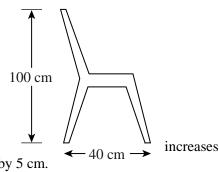
$$x + y < 5$$

Write down **two** pairs of values of x and y which satisfy all three inequalities.

Answer (.....) and (.....)

PM


Basic Inequalities Revision


(2)

[1]

10. A stacking chair is 100 cm high and 40 cm wide.

When a chair is added to a stack it the height by 10 cm and the width by 5 cm.

(a) Find an expression for the height of a stack of n chairs.

.....

Answer

(b) A rule for the maximum number of chairs that can be stacked before they fall over is

$$4n + 35 < 70$$

What is the maximum number of chairs that can be stacked?

- 11. (a) In each part give one example to show that the statement is **false**. You must show your working.
 - (i) For every non-zero number y, 2y > y.

.....

(ii) For every non-zero number x, $x^2 > x$.

[2]

- (b) Given that $-5 \le x \le 3$ and $-7 \le y \le 4$, find
 - (i) the largest value of x^2 ,

.....

(ii) the largest value of y - x,

......[1]

(iii) the smallest value of xy.

.....

[1]