Year 1 - Week 10 Exam Questions - Mark Schee

Q1 Solution link https://www.youtube.com/watch?v=0lqSSD9jYts

Q2 Solution link https://www.youtube.com/watch?v=Fn79BWQn-UE

https://www.youtube.com/watch?v=BYcuPM6bEIQ

Q3Solution link https://www.youtube.com/watch?v=rYYOO937nvY

Mark Scheme

Question 1

(a)
$$30^{2} = 2a.300$$

$$a = 1.5$$
(b)
$$0^{2} = 30^{2} - 2 \times 1.25s \qquad OR \qquad 0 = 30 - 1.25t_{2}$$

$$s = 360 \qquad t_{2} = 24 \qquad A1$$

$$300 + 30T + 360 = 1500 \qquad \frac{(20 + T + 24 + T)}{2} \times 30 = 1500 \qquad M1 \text{ A1}$$

$$T = 28 \qquad T = 28 \qquad A1 \qquad (5)$$

Question 2

(a)
$$v^2 = u^2 + 2as \implies 28^2 = u^2 + 2 \times 9.8 \times 17.5$$

Leading to $u = 21$ *****

(b) $s = ut + \frac{1}{2}at^2 \implies 19 = 21t - 4.9t^2$
 $4.9t^2 - 21t + 19 = 0$
 $t = \frac{21 \pm \sqrt{21^2 - 4 \times 4.9 \times 19}}{9.8}$
 $t = 2.99 \text{ or } 3.0$
 $t = 1.30 \text{ or } 1.3$

M1 A1

A1

(5)

Question 3

(a)	$240 = \frac{1}{2}(u + 34)10$	M1 A1
	u = 14	A1
		(3)
(b)	$34 = 14 + 10a \implies a = 2$	M1 A1
	$120 = 14t + \frac{1}{2} \times 2 \times t^2$	M1 A1
	$t^2 + 14t - 120 = 0$	
	Solving, $t = -20$ or 6	DM 1
	t = 6	A1
	OR	
	$34 = 14 + 10a \implies a = 2$	M1 A1
	$v^2 = 14^2 + 2 \times 2 \times 120 \implies v = 26$	
	AND $26 = 14 + 2t$	M1 A1
	<i>t</i> = 6	DM 1 A1
		(6)
		[9]

Question 4

	M1	
Attempt to set up an equation of motion for 'A to B' using $a=22$ and $b=2$. Sets up an equation in a and b only. (or a and b , where b is the velocity at b). Obtains $b=22=2a+2a$ or $b=22=2b-2a$ (OE) Sets up a second equation of motion using either 'A to $b=2a$ or 'B to $b=2a$ using either $b=2a$ and $b=2a$ (A to $b=2a$) or $b=2a$ and $b=2a$ (OE) Obtains $b=2a$ and $b=2a$ or $b=2a$ (OE) Attempts to solve the simultaneous equations. Note: If $b=2a$ is found, an attempt to find $b=2a$ must also be made. Obtains correct values for $b=2a$ and $b=2a$.		From A to B: a = 22 m
		u = u v = ? $a = a$ $22 = 2u + \frac{1}{2}a(2)^2$ 22 = 2u + 2a (1)
		t=2a From A to C:
		a = 126 m $a = a$ $126 = 6a + \frac{1}{2}a(6)^2$ a = 2 $126 = 6a + 18a$
		a = a $21 = u + 3a$ (2)
		t = 6a Solving (1) and (2) simultaneously: $u = 6 \text{ ms}^{-1}$. $a = 5 \text{ ms}^{-2}$
		5 5 mz , u = 5 mz

Question 5

. (a)	Correct use of distance formula with at least three terms correct. Note: Omission of square root scores MOAO	M1	$AB = \sqrt{(-2-6)^2 + (7-1)^2}$ AB = 10
	Correct Answer	A1	
		2 marks	
(b)	Correct use of $\frac{y_2-y_1}{x_2-x_1}$ (condone one sign error)	M1	$m = \frac{7-1}{-2-6} = -\frac{3}{4}$
	Correct answer (OE)	A1	
		2 marks	
(c)	Attempt to find the gradient by rearranging $4x - 3y - 10 = 0$ to make y the subject.	M1	4x - 3y - 10 = 0 $3y = 4x - 10$
	Attempt to use $m \times m_{\perp} = -1$ for their gradients. (may be implied by attempt to use of negative reciprocal)	B1ft	$y = \frac{4}{3}x - \frac{10}{3}$
	Reaches correct conclusion (the lines are perpendicular) from correct working.	A1	∴Gradient is $\frac{4}{3}$
		3 marks	$-\frac{3}{4} \times \frac{4}{3} = -1$
			∴ The lines are perpendicular.

Question 6

Equates the two expressions.		$y = 2x^2 - hx y = x^2 - k$		
		$\therefore 2x^2 - kx = x^2 - k$ $x^2 - kx + k = 0$		
		$h^2 - 4h \ge 0$ $h(h - 4) \ge 0$		
		Correct final answer from correct reasoning.		
\therefore Solutions exist provided that $k \leq 0$ or $k \geq 4$				