Question	1	2	3	4	5	6	Total
Marks							
Max Marks	4	6	7	13	10	11	51

1. A man of mass 70 kg stands on the floor of a lift which is moving with an upward acceleration of $0.3 \mathrm{~ms}^{-2}$. Calculate the magnitude of the force exerted by the floor on the man.
2. A car of mass 900 kg is travelling in a straight line on a horizontal road. The driving force acting on the car is 600 N , and a resisting force of 240 N opposes the motion.
(a) Show that the acceleration of the car is $0.4 \mathrm{~ms}^{-2}$.
(b) Calculate the time and the distance required for the speed of the car to increase from $5 \mathrm{~ms}^{-1}$ to $9 \mathrm{~ms}^{-1}$.
[4 marks]
3. A small stone is projected vertically upwards from a point O with a speed of $19.6 \mathrm{~ms}^{-1}$. Modelling the stone as a particle moving freely under gravity.
(a) Find the greatest height above O reached by the stone.
(b) Find the length of time for which the stone is more than 14.7 m above 0 .
4. A car is moving on a straight horizontal road. At time $t=0$, the car is moving with speed $20 \mathrm{~ms}^{-1}$ and is at the point A. The car maintains the speed of $20 \mathrm{~ms}^{-1}$ for 25 s .

The car then moves with constant deceleration $0.4 \mathrm{~ms}^{-2}$, reducing its speed from $20 \mathrm{~ms}^{-1}$ to $8 \mathrm{~ms}^{-1}$. The car then moves with constant speed $8 \mathrm{~ms}^{-1}$ for 60 s . The car then moves with constant acceleration until it is moving with speed $20 \mathrm{~ms}^{-1}$ at the point B.
(a) Sketch a velocity-time graph to represent the motion of the car from A to B.
(b) Find the time for which the car is decelerating.

Given that the distance from A to B is 1960 m ,
(c) find the time taken for the car to move from A to B.

Year $1 \mid$ Applied Mathematics \mid Peer Marked Task 3

5. Two athletes, Sam and Tom, are in a race. Sam runs at a constant speed of $8.8 \mathrm{~ms}^{-1}$. When Sam is 180 m from the finishing tape, Tom is 10 m behind him. At this moment, Tom, who was running at $8.5 \mathrm{~ms}^{-1}$, begins to accelerate at a constant rate of $0.2 \mathrm{~ms}^{-2}$. When his speed reaches $9.3 \mathrm{~ms}^{-1}$, he ceases to accelerate and continues to run with this speed.
(a) (i) Find the time taken for Tom to accelerate from $8.5 \mathrm{~ms}^{-1}$ to $9.3 \mathrm{~ms}^{-1}$.
(ii) Find the distance Tom runs during this time.
(b) Determine
(i) which athlete wins the race;
(ii) how far ahead of the other athlete the winning athlete is when he passes the finishing tape.
6. A particle P is projected vertically upwards, from horizontal ground, with speed $8.4 \mathrm{~ms}^{-1}$.
(a) Show that the greatest height above the ground reached by P is 3.6 m .

A particle Q is projected vertically upwards, from a point 2 m above the ground, with speed $u \mathrm{~ms}^{-1}$. The greatest height above the ground reached by Q is also 3.6 m .
(b) Find the value of u.

It is given that P and Q are projected simultaneously.
(c) Show that, at the instant when P and Q are at the same height, the particles have the same speed and are moving in opposite directions.

