YEAR 1 | WEEK 11 EXAM QUESTIONS

Question	1	2	3	4	5	6	Total
Marks							
Max Marks	4	6	7	13	10	11	51

A man of mass $70~\mathrm{kg}$ stands on the floor of a lift which is moving with an upward acceleration

1.

		of 0.3 ms^{-2} . Calculate the magnitude of the force exerted by the floor on the man.	[4 marks]
2.		A car of mass $900~kg$ is travelling in a straight line on a horizontal road. The driving force acting on the car is $600~N$, and a resisting force of $240~N$ opposes the motion.	
	(a)	Show that the acceleration of the car is 0.4 ms^{-2} .	
	(b)	Calculate the time and the distance required for the speed of the car to increase from $5~{ m ms}^{-1}$ to $9~{ m ms}^{-1}$.	[2 marks]
			[4 marks]
3.		A small stone is projected vertically upwards from a point $\it 0$ with a speed of $19.6{ m ms}^{-1}$. Modelling the stone as a particle moving freely under gravity.	
	(a)	Find the greatest height above $oldsymbol{0}$ reached by the stone.	[2]
	(b)	Find the length of time for which the stone is more than 14.7 m above $0.$	[2 marks]
			[5 marks]
4.		A car is moving on a straight horizontal road. At time $t = 0$, the car is moving with speed 20 ms^{-1} and is at the point <i>A</i> . The car maintains the speed of 20 ms^{-1} for 25 s.	
		The car then moves with constant deceleration 0.4 ms^{-2} , reducing its speed from 20 ms^{-1} to 8 ms^{-1} . The car then moves with constant speed 8 ms^{-1} for 60 s. The car then moves with constant acceleration until it is moving with speed 20 ms^{-1} at the point <i>B</i> .	
	(a)	Sketch a velocity-time graph to represent the motion of the car from A to B .	(o 1
	(b)	Find the time for which the car is decelerating.	[3 marks]
		Given that the distance from A to B is 1960 m,	[2 marks]
	(c)	find the time taken for the car to move from A to B .	
			[8 marks]

YEAR 1 | APPLIED MATHEMATICS | PEER MARKED TASK 3

5.		Two athletes, Sam and Tom, are in a race. Sam runs at a constant speed of 8.8 ms^{-1} . When Sam is 180 m from the finishing tape, Tom is 10 m behind him. At this moment, Tom, who was running at 8.5 ms^{-1} , begins to accelerate at a constant rate of 0.2 ms^{-2} . When his speed reaches 9.3 ms^{-1} , he ceases to accelerate and continues to run with this speed.				
	(a) (i)	Find the time taken for Tom to accelerate from 8.5 ms^{-1} to 9.3 ms^{-1} .				
	(ii)) Find the distance Tom runs during this time.	[2 marks] [2 marks]			
	(b)	Determine				
	(i)	which athlete wins the race;				
	(ii)) how far ahead of the other athlete the winning athlete is when he passes the finishing tape.	[5 marks]			
			[1 mark]			
6.		A particle <i>P</i> is projected vertically upwards, from horizontal ground, with speed 8.4 ms ⁻¹ .				
	(a)	Show that the greatest height above the ground reached by P is $3.6 \mathrm{~m}$.				
((b)	A particle Q is projected vertically upwards, from a point 2 m above the ground, with speed u ms ⁻¹ . The greatest height above the ground reached by Q is also 3.6 m. Find the value of u .				
	(-)		[2 marks]			
	(c)	It is given that P and Q are projected simultaneously. Show that, at the instant when P and Q are at the same height, the particles have the same speed and are moving in opposite directions.				
			[6 marks]			