# Year 1 - Week 14 Exam Questions

A selection from OCR Papers (2018)

| Question  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Total |   |
|-----------|---|---|---|---|---|---|---|---|-------|---|
| Marks     |   |   |   |   |   |   |   |   |       |   |
| Max Marks | 5 | 4 | 5 | 6 | 4 | 6 | 7 | 8 | 45    | % |

Estimated time: 55 minutes

## Question 1

In this question you must show detailed reasoning.

- (i) Express  $3^{\frac{7}{2}}$  in the form  $a\sqrt{b}$ , where a is an integer and b is a prime number. [2]
- (ii) Express  $\frac{\sqrt{2}}{1-\sqrt{2}}$  in the form  $c+d\sqrt{e}$ , where c and d are integers and e is a prime number. [3]

## Question 2

- (i) The equation  $x^2 + 3x + k = 0$  has repeated roots. Find the value of the constant k. [2]
- (ii) Solve the inequality  $6+x-x^2>0$ . [2]

#### Question 3

The probability distribution of a random variable *X* is given in the table.

| x      | 0   | 2        | 4          | 6 |
|--------|-----|----------|------------|---|
| P(X=x) | 3/8 | <u>5</u> | 4 <i>p</i> | p |

- (i) Find the value of p. [2]
- (ii) Two values of X are chosen at random. Find the probability that the product of these values is 0. [3]

### Question 4

In triangle ABC, AB = 20 cm and angle  $B = 45^{\circ}$ .

- (i) Given that AC = 16 cm, find the two possible values for angle C, correct to 1 decimal place. [4]
- (ii) Given instead that the area of the triangle is  $75\sqrt{2}$  cm<sup>2</sup>, find BC. [2]

## Question 5

- (i) The curve  $y = \frac{2}{3+x}$  is translated by four units in the positive x-direction. State the equation of the curve after it has been translated. [2]
- (ii) Describe fully the single transformation that transforms the curve  $y = \frac{2}{3+x}$  to  $y = \frac{5}{3+x}$ . [2]

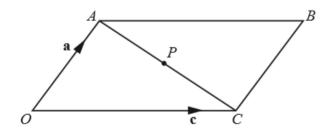
## Question 6

(i) Express 
$$4x^2 - 12x + 11$$
 in the form  $a(x+b)^2 + c$ . [3]

- (ii) State the number of real roots of the equation  $4x^2 12x + 11 = 0$ . [1]
- (iii) Explain fully how the value of r is related to the number of real roots of the equation  $p(x+q)^2 + r = 0$  where p, q and r are real constants and p > 0.

## Question 7

 $\overrightarrow{OABC}$  is a parallelogram with  $\overrightarrow{OA} = \mathbf{a}$  and  $\overrightarrow{OC} = \mathbf{c}$ . P is the midpoint of AC.



Find the following in terms of a and c, simplifying your answers.

(a) 
$$\overrightarrow{AC}$$
 [1]

(b) 
$$\overrightarrow{OP}$$
 [2]

(ii) Hence prove that the diagonals of a parallelogram bisect one another. [4]



A particle *P* is moving along a straight line with constant acceleration. Initially the particle is at *O*. After 9 s, *P* is at a point *A*, where  $OA = 18 \,\mathrm{m}$  (see diagram) and the velocity of *P* at *A* is  $8 \,\mathrm{m}\,\mathrm{s}^{-1}$  in the direction  $\overrightarrow{OA}$ .

- (i) (a) Show that the initial speed of P is  $4 \,\mathrm{m \, s^{-1}}$ . [2]
  - (b) Find the acceleration of P. [2]

B is a point on the line such that  $OB = 10 \,\mathrm{m}$ , as shown in the diagram.

(ii) Show that P is never at point B. [4]