Year 1 – Week 14 Exam Questions

Mark Scheme

Question 1

Question			Answer	Mks
1	(i)		DR $(\sqrt{3})^7$ or $\sqrt{3}^7$ or $3^3 \times \sqrt{3}$ or $3\sqrt{243}$	М1
			27√3	A1 [2]
1	(ii)		$ \frac{\sqrt{2}}{1-\sqrt{2}} \times \frac{1+\sqrt{2}}{1+\sqrt{2}} $	М1
			$= \frac{\sqrt{2}+2}{1-2} \text{ or } \frac{\sqrt{2}+2}{-1} \text{ or } \frac{\sqrt{2}+2}{1+\sqrt{2}-\sqrt{2}-2}$	Al
			$=-2-\sqrt{2}$ ISW	A1 [3]

Question 2

2	(i)	$3^2 - 4k = 0$	M1
		$k = \frac{9}{4}$ or 2.25	A1
			[2]
2	(ii)	(3-x)(2+x) > 0 or $(x-3)(x+2) < 0-2 < x < 3 or 3 > x > -2 ISW$	M1
			A1
		or $x \in (-2, 3)$	
			[2]

Question 3

(Question		Answer			
10	(i)		$\frac{3}{8} + \frac{5}{16} + 4p + p = 1$ $p = \frac{1}{16} \text{ or } 0.0625$	M1		
			$p = \frac{1}{16}$ or 0.0625	A1		
				[2]		
10	(ii)		$\frac{3}{8} \times \frac{5}{8}$ or $\frac{3}{8} \times \frac{3}{8}$ seen oe	M1		
			$\frac{3}{8} \times \frac{5}{8} + \frac{5}{8} \times \frac{3}{8} + \frac{3}{8} \times \frac{3}{8}$ oe	M1		
			$=\frac{39}{64}$ or 0.609 (3 sf))	A1		
				[3]		

Question 4

-	Question		Answer	Marks
1	(i)		$\frac{\sin x}{20} = \frac{\sin 45}{16}$	M1*
			$\sin x = \frac{20\sin 45}{16} \left(= \frac{5\sqrt{2}}{8} \right)$	Al
				Dep*M1
			62.1 and 117.9	Al
				[4]
1	(ii)		$\frac{1}{2}(BC)(20)\sin(45) = 75\sqrt{2}$	мі
			(BC =) 15 (cm)	Al
				[2]

Question 5

	Question		Answer	Marks
2	(i)		$\frac{2}{3+x-4}$ or $\frac{2}{3+x+4}$	мі
			$y = \frac{2}{x - 1}$	Al
				[2]
	(ii)		Stretch	B1
			Scale factor $\frac{5}{2}$ parallel to the y -axis	B1 [2]

Question 6

(Question		Ansv	Marks	
4	(i)		$4\left[x^2-3x\right]+11$		
			$4\left[x^{2}-3x\right]+11$ $4\left[\left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}\right]+11$	a = 4	B1
			[(2) 4]	$(x-3/2)^2$	В1
			$4\left(x-\frac{3}{2}\right)^2+2$	c = 2	В1
					[3]
	(ii)		No real roots		B1
					[1]
	(iii)		$r = 0 \Rightarrow 1$ real root or 1 rep	peated root	M1
			$r < 0 \Rightarrow 2$ real roots		
			$r < 0 \Rightarrow 2$ real roots $r > 0 \Rightarrow$ no real roots		Al
					[2]

Question 7

Question			Answer	Mks
7	(i)	(b)	$\mathbf{a} + \frac{1}{2}(\mathbf{c} - \mathbf{a})$ or $\mathbf{c} + \frac{1}{2}(\mathbf{a} - \mathbf{c})$	М1
			$\mathbf{a} + \frac{1}{2}(\mathbf{c} - \mathbf{a}) \text{or} \mathbf{c} + \frac{1}{2}(\mathbf{a} - \mathbf{c})$ $= \frac{1}{2}(\mathbf{a} + \mathbf{c}) \text{or} \frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{c}$	Al
				[2]
	(ii)		$\overrightarrow{OB} = (\mathbf{a} + \mathbf{c})$	М1
			$\Rightarrow \overrightarrow{OP} = \frac{1}{2} \overrightarrow{OB}$ Must see previous line $\Rightarrow P \text{ is midpt of } OB$ or OPB is a straight line and $OP = PB$ Hence diagonals of $//m$ bisect one another	A1* dep* A1 E1

	Question		Answer		AOs	Guidance
11	(i)	(a)	$18 = \left(\frac{8+u}{2}\right)(9)$	M1	3.4	Use of $s = \left(\frac{u+v}{2}\right)t$
			u = -4 therefore the speed of P is 4 (m s ⁻¹)	Al	1.1	AG
				[2]		
	(i)	(b)	eg $8 = -4 + 9a$	M1	3.4	Use of $v = u + at$ with their u or $s = vt - \frac{1}{2}at^2$ or $v^2 = u^2 + 2as$ with their u or $s = ut + \frac{1}{2}at^2$ with their u
			$a = \frac{4}{3} \text{ (m s}^{-2}\text{)}$	Al	1.1	Accept 1.33 or better
			,	[2]		
				.,		
i (Questic	n	Answer	Marks	AOs	Guidance
	(ii)		$0 = -4 + \frac{4}{3}t$	Ml	3.1b	Use of $v = u + at$ with $v = 0$ and their a and u
			t = 3	Al	1.1	
			$-s_{\text{max}} = -4t + \frac{1}{2} \left(\frac{4}{3}\right) t^2$	M1	3.4	Use of $s = ut + \frac{1}{2}at^2$ with their a, u & t
		OR	$s_{\text{max}} = 6 < 10 \text{ so } P \text{ is never at } B$	A1 [4]	2.2a	Compare with 10 or suitable comment
				M1		Use of $s = ut + \frac{1}{2}at^2$ with their u and a and suitable s
			$-10 = -4t + \frac{1}{2} \left(\frac{4}{3}\right) t^2$	Al		
				MI		Consider $b^2 - 4ac$ or attempt to solve three term quadratic in t
			e.g. $det = -24$ therefore not possible	Al		Or $36 - 60 \le 0$ therefore not possible
		OR	$0 = (\pm 4)^{2} + 2\left(\frac{4}{3}\right)s \text{ or } v^{2} = (\pm 4)^{2} + 2\left(\frac{4}{3}\right)(-10)$ $s = -6 \text{ or } v^{2} = -\frac{32}{3}$	M2		Use of $v^2 = u^2 + 2as$ with their a and u and either $v = 0$ or $s = \pm 10$
			$s = -6$ or $v^2 = -\frac{32}{3}$	Al		
			Suitable conclusion	Al		Dependent on previous A mark