Year 1 – Week 18 Exam Questions

Mark Scheme

From Paper 1

Q	Marking Instructions	AO	Marks	Typical Solution
5	Demonstrates a clear understanding that $\sin x = 0$ is a solution, and that this has not been properly taken into account.	AO2.3	R1	$\sin x = 0$ leads to a solution, but when she cancelled $\sin x$ she effectively assumed it was not equal to 0 and hence lost a number of solutions.
	Explains that cancelling sin x is not allowed if it is zero / only allowed if it is non-zero	AO2.4	E1	
	Total		2	

Q	Marking Instructions	AO	Marks	Typical Solution
6	Translates given information into an equation by using the formula for the area of triangle or parallelogram to form a correct equation	AO3.1a	M1	AB × AD × $\sin \alpha = 24$ hence 6 × 4.5 × $\sin \alpha = 24$
	Rearranges 'their' equation to obtain a correct value of $\sin \alpha$	AO1.1b	A1F	$\sin\alpha = \frac{24}{27} = \frac{8}{9}$
	Uses 'their' $\sin \alpha$ value to identify an appropriate right-angled triangle or uses identities and deduces exact ratio of $\tan \alpha$ – positive or negative Condone only positive ratio seen	AO2.2a	М1	Sides of right angled triangle are 8, 9 and $\sqrt{17}$ Hence $\tan \alpha = \pm \frac{8}{\sqrt{17}}$
	Relates back to mathematical context of problem and hence chooses negative ratio – accept any equivalent exact form FT 'their' tan values for obtuse α	AO3.2a	A1F	α is one of the largest angles and must be obtuse hence tangent is negative $\tan \alpha = -\frac{8}{\sqrt{17}} = -\frac{8\sqrt{17}}{17}$
	Total		4	

Q	Marking Instructions	AO	Marks	Typical Solution
8(a)	Uses binomial theorem to expand bracket – correct unsimplified expression but condone sign error	AO1.1a	M1	$1+\binom{10}{1}(-2x)^1+\binom{10}{2}(-2x)^2$
	Obtains constant term and x term, both correct	AO1.1b	A1	$=1-20x+180x^2$
	Obtains correct x ² term	AO1.1b	A1	
(b)	Selects <i>x</i> = 0.001	AO3.1a	B1	Substituting $x = 0.001$
	Substitutes 'their' chosen value of <i>x</i> into 'their' expansion from part (a) to obtain a 5 decimal place value	AO1.1a	M1	1 - 0.020 + 0.000180 = 0.98018
	Gives a correct explanation to confirm that the value found from the calculator is 0.98018 to 5 decimal places which is the same as the value found by using the expansion	AO2.4	A1	0.998 ¹⁰ = 0.980179 = 0.98018 to 5 dp, which matches Carly's value.
	Total		6	

Q	Marking Instructions	AO	Marks	Typical Solution
12(a)	Rewrites given expression with a fractional power and negative power – at least one index form must be correct	AO1.1a	M1	$y = 6x^{\frac{3}{2}} + 32x^{-1}$
	Both terms correct	AO1.1b	A1	
	Differentiates 'their' rewritten expression – at least one term correct	AO1.1a	M1	$\frac{dy}{dx} = 6 \times \frac{3}{2} \times x^{\frac{1}{2}} - 32x^{-2}$ $= 9\sqrt{x} - \frac{32}{x^2}$
	Both terms correct for 'their' expression	AO1.1b	A1F	
(b)	Finds the equation of the tangent, a clear attempt must be seen	AO3.1a	M1	When $x = 4$,
	Evaluates 'their' $\frac{dy}{dx}$ (from part (a)) correctly (when $x = 4$)	AO1.1b	A1F	$\frac{\mathrm{d}y}{\mathrm{d}x} = 9 \times 2 - \frac{32}{16} = 16$ and
	Obtains correct y value (when $x = 4$)	AO1.1b	A1	$y = 6 \times 4 \times 2 + \frac{32}{4} = 56$
	Obtains correct form of the equation of a straight line using 'their' values for y and $\frac{\mathrm{d}y}{\mathrm{d}x}$	AO1.1b	A1F	Tangent: y-56=16(x-4) When $y=0$,
	Deduces value required at <i>x</i> -axis is when <i>y</i> equals 0 (follow through from 'their' equation)	AO2.2a	A1F	$x = 4 - \frac{56}{16} = 0.5$ $(0.5, 0)$
	Both coordinates needed, any form			
	Total		9	

	Total		3	
	Obtains correct reaction force. Must be given to 1 sf FT from incorrect 3 term equation provided M1 mark was awarded (condone omission of units)	AO1.1b	A1F	F = 680 = 700 (N) to 1 sf
	Obtains a correct 3 term equation.	AO1.1b	A1	F - 800 = -120
	Award mark even if signs not correct			
14	Applies Newton's 2 nd Law to form a 3 term equation	AO1.1a	M1	$F - 80 \times 10 = -80 \times 1.5$

From Paper 2

Q	Marking Instructions	AO	Marks	Typical Solution
7	Divides or multiplies by $\cos \theta$	AO3.1a	M1	$\frac{\sin\theta\tan\theta}{\cos\theta} + 2\frac{\sin\theta}{\cos\theta} = 3$
	Obtains correct quadratic	AO1.1b	A1	$\tan^2\theta + 2\tan\theta - 3 = 0$
	Applies a correct method to solve 'their' quadratic PI	AO1.1a	M1	$(\tan \theta + 3)(\tan \theta - 1) = 0$ $\tan \theta = 1 \text{ or } -3$
	Finds two correct values of $ an heta$ from 'their' quadratic	AO1.1b	A1F	θ = 45° or 108° ALT
	Obtains two correct answers CAO	AO1.1b	A1	$\sin \theta \tan \theta \cos \theta + 2\sin \theta \cos \theta = 3\cos^2 \theta$ $\sin^2 \theta + 2\sin \theta \cos \theta - 3\cos^2 \theta = 0$
				$(\sin \theta + 3\cos \theta)(\sin \theta - \cos \theta) = 0$ $\tan \theta = 1 \text{ or } -3$
	Total		5	$\theta = 45^{\circ} \text{ or } 108^{\circ}$

Q	Marking Instructions	AO	Marks	Typical Solution
11(a)(i)	States correct radius CAO	AO1.2	B1	Radius = $\sqrt{5}$
(a)(ii)	States correct centre CAO	AO1.2	B1	C is (7, -2)
(b)	Finds gradient of the line through the points <i>P</i> and 'their' <i>C</i> (as found in part (a))	AO3.1a	M1	Gradient $CP = \frac{-1 - (-2)}{5 - 7} = -\frac{1}{2}$
	Condone one sign error			
	Correct tangent gradient obtained from 'their' <i>CP</i> gradient	AO3.1a	M1	So tangent gradient = 2
	Uses a correct form for the equation of a straight line with correct coordinates of <i>P</i> and 'their' tangent gradient	AO1.1a	M1	y - (-1) = 2(x - 5)
	States correct final answer in required form $(y = mx + c)$ FT from 'their' C found in	AO1.1b	A1F	y = 2x - 11
	part (a)			
<u> </u>				
(c)	Identifies QTC as a right-angled triangle PI	AO3.1a	M1	QTC is a right-angled triangle so we can use Pythagoras
	Finds QC or QC ² FT 'their' C found in part (a)	AO1.1b	B1F	$QC^2 = (7-3)^2 + (-2-3)^2$
	Uses Pythagoras' theorem correctly for 'their' triangle	AO1.1a	M1	$4^2 + 5^2 = (\sqrt{5})^2 + QT^2$
	Correct evaluation of length of QT	AO1.1b	A1F	$QT^2 = 36$ so $QT = 6$
	FT 'their' QC and 'their' radius found in part (a)			
	Total		10	

Q	Marking Instructions	AO	Marks	Typical Solution
13	Circles correct answer	AO1.1b	B1	0.26
	Total		1	

15	Finds P(Drop and Beanstalk and Giant)	AO1.1a	M1	$\frac{80}{225} \times \frac{75}{224} \times \frac{70}{223}$
	Multiplies by 6 to obtain correct answer	AO1.1b	A1	$\frac{80}{225} \times \frac{75}{224} \times \frac{70}{223} \times 6 = 0.224$
	Total		2	