Year 1 - Week 5 - Mixed Exam Questions

Mark scheme

Question 1

(a)

Answer	Marks	Guidan	ce
2-x < 1+3(x-2) $\Rightarrow 2 < 4x-5$ $\Rightarrow 4x > 7$ $\Rightarrow x > \frac{7}{4}$	B1 B1 B1	Remove brackets giving rhs $1 + 3x - 6$ or better Ft Result in the form $ax > b$ oe	
	[3]		

(b)

-6 < 2x - 1 < 7 $\Rightarrow -5 < 2x < 8 \Rightarrow -\frac{5}{2} < x < 4$

	Question		Answer	Marks	Guida	nce
6	(i)		(i) \times 3: 9x+12y = 54	M1	Making a coefficient the same	Alternatively soln by substitution
			(ii) \times 4: $28x - 12y = 20$ Add: $37x = 74$	M1	Elimination	
			$\Rightarrow x = 2$ $\Rightarrow y = 3$	A1 A1		SC Answer only or www seen B4
				[4]		
	(ii)		Sketch to show two lines, one +ve gradient and one -ve,	B1	Two lines	
			intersecting at their point from (i)	B1	Dep. Their intersection	
				[2]		

(Questi	on	Answer	Marks	Guida	nce
8	(i)		$\frac{x+a}{x} + \frac{x-2}{4} = 0$ $\Rightarrow 4x + 4a + x^2 - 2x = 0$	M1	Clear fractions on lhs	
			$\Rightarrow x^{2} + 2x = -4a$ $\Rightarrow x^{2} + 2x + 1 = 1 - 4a$ $\Rightarrow (x+1)^{2} = 1 - 4a$	M1	Collection of terms to a 3 term quadratic and attempt to complete the square	"Attempt" means make lhs include $x^2 + 2px + p^2$
				A1	Correct final form	
				[3]		
	(ii)		(Roots if) their $q \ge 0$ $\Rightarrow a \le \frac{1}{4}$	M1 A1	Soi. Allow use of > ft <i>their q</i> . correct inequality.	Allow = here only if ans is correct. Allow expansion of quadratic and use of discriminant
				[2]		
	(iii)		$(x+1)^2 = 5$ $\Rightarrow x = -1 \pm \sqrt{5}$	M1 A1	Substitute to obtain quadratic in form $(x+p)^2 = n$ Both required isw	Allow use of formula
				[2]		

	Question		Answer	Marks	Guidance	
14	(a)	(i)	$s = \frac{1}{2}2t^2 \left(=t^2\right)$	B1		
				[1]		
		(ii)	90 km $h^{-1} = 25 \text{ m s}^{-1}$ or $2\text{ms}^{-2} = 25920 \text{ km hr}^{-2}$	B1	Units must be given - others are possible	Beware mixing of units which could give 12.5
			$v = 2t \Longrightarrow 25 = 2t$	M1	Application of $v = u + at$ with consistent units	
			$\Rightarrow t = 12.5 \text{ secs}$	A1	Units must be given	
				[3]		

Q	uesti	on	Answer	Marks		Guidance
2			Line is $\pm 3x \pm 2y = k$ 3x - 2y = k	M1 A1	Swapping coefficients Correct form	Alt: gradient of line = $-\frac{2}{3}$ B1 soi accept $-\frac{2}{3}x$
			Satisfies $(3, -1)$ $\Rightarrow k = 9 + 2 = 11$ giving $3x - 2y = 11$ oe	M1 A1	Substituting into <i>their</i> equation Final equation three terms only must be seen	$\Rightarrow \text{ grad of perp} = \frac{3}{2} \text{M1} \text{ for finding numerical perp}$ $\Rightarrow y = their \frac{3}{2}x + c \qquad \text{M1 substituting } (3, -1)$ $\text{that is not parallel to the original line}$ $\Rightarrow y = \frac{3}{2}x - 5.5 \text{ oe} \qquad \text{A1}$
						i.e. writing "c = - 5.5" only loses last A mark
				4		

(Questi	on	Answer	Marks	
4	(i)		AB = $\sqrt{(1-3)^2 + (5-7)^2} (=\sqrt{16+4})$	M1	Applying Pythagoras correctly
			$\Rightarrow AB = \sqrt{20} (= 2\sqrt{5})$	A1	
			(isw for any decimal given)		
				2	
	(ii)		(-1,6)	B1	
				1	

	Question		Answer	Marks	Guidance	
7	(i)		$\Rightarrow x+7=3+5x-x^2$	M1	Substitute, eliminating x or y.	
			$\Rightarrow x^2 - 4x + 4 = 0$ oe	A1	3 term quadratic.	Or $y^2 - 18y + 81 = 0$
			$\Rightarrow x = 2,$ y = 9	A1 A1	x(or y) Substitute and find y (or x).	
				4		
	(ii)		Line is tangent to curve (at (2, 9))	B1	Allow "touches".	Or a sketch with any parabola
						touched by any line
				1		

Q	uestion	Answer	Marks	Guid
8	(i)	Grad AB = Grad CD = 1 $\left(=\frac{41}{05}\right)$ and $\left(=\frac{-2-3}{2-7}\right)$ oe	B1	For showing one pair of gradients equal and correct www
		Grad BC = Grad AD = $-\frac{1}{7}\left(=\frac{3-4}{7-0}\right)$ and $\left(=\frac{-21}{25}\right)$ Two pairs of parallel sides (means ABCD parallelogram)	B1	For showing other pair of gradients equal and correct plus completion
			[2]	
	(ii)	$AB^2 = 5^2 + 5^2$ (=50) oe for any side	B1	One length (or squared length)
		$BC^{2} = 1^{2} + 7^{2} (=50)$ $\Rightarrow AB^{2} = BC^{2} (=50)$ Equal sides (means rhombus)	B1	For adjacent length plus completion www
		Condition to an effect of an end of the	[2]	
	(iii)	Gradients do not fulfil m_1 . $m_2 = -1$ oe	M1	For use of m_1 . $m_2 = -1$
		ie $1 \times -\frac{1}{7} \neq -1$ Therefore lines not perpendicular Alternatives:	A1 [2]	Gradients must be correct.
		A: Use of cosine rule Does not give 90°	M1 A1	www
		B: Use of Pythagoras	M1	
		Not satisfied therefore not 90°	A1	www
		C: Use of pythagoras to find length of diagonals	M1	
		(i.e. $\sqrt{160}$ and $\sqrt{40}$) Diagonals not equal	A1	www

ג	Marking Instructions	Marks	Typical Solution
(a)	Note: Vectors in mark schemes are in bold type. Handwritten vectors should be underlined (do not penalise through loss of marks).		$\overrightarrow{AB} = \mathbf{a}$, $AB : BE = 3 : 2$ $\overrightarrow{BE} = \frac{2}{2}\overrightarrow{AB}$
	$\overline{BE} = \frac{2}{3} \mathbf{a}$ or $AE = \frac{5}{3} \mathbf{a}$ (OE)	B1	$=\frac{2}{3}\mathbf{a}$
	$\overrightarrow{ED} = -\overrightarrow{BE} - \overrightarrow{AB} + \overrightarrow{AD} \text{ (using their } \overrightarrow{BE} \text{)}$	M1	$\overrightarrow{ED} = -\overrightarrow{BE} - \overrightarrow{AB} + \overrightarrow{AD}$
	Correct final answer (must be simplified).	A1	$= -\frac{2}{3}\mathbf{a} - \mathbf{a} + \mathbf{b}$
		3 marks	$= -\frac{5}{3}\mathbf{a} - \mathbf{a} + \mathbf{b}$ $= -\frac{5}{3}\mathbf{a} + \mathbf{b}$
(b)	$\overrightarrow{EF} = \frac{2}{-\overrightarrow{ED}}$	B1	Using 'similar triangles':
	5	A1	$\overrightarrow{EF} = \frac{2}{5}\overrightarrow{ED}$
		2 marks	$=\frac{2}{5}\left(-\frac{5}{3}\mathbf{a}+\mathbf{b}\right)$
			$= -\frac{2}{3}\mathbf{a} + \frac{2}{5}\mathbf{b}$