Question 1

$$\frac{11-x}{(3-x)(1+x)}$$

$$\frac{2(1+x)+3(3-x)}{(3-x)(1+x)}$$
 B1

$$\frac{11-x}{(3-x)(1+x)} \text{ oe isw}$$
 B1

Question 2

$$3\left(x - \frac{5}{6}\right)^2 - \frac{13}{12}$$

$$3(x^{2} - \frac{5}{3}x) + 1$$

$$3[(x - \frac{5}{6})^{2} - \frac{25}{36}] + 1$$

$$3(x - \frac{5}{6})^{2} - \frac{13}{12}$$
A1

Question 3

$$x = -3 \text{ or } x = 1$$

$$k = x^3$$
 *M1
 $k^2 + 26k - 27 = 0$ A1
 $k = -27, 1$ A1
DM1
 $x = -3, 1$ A1

Question 4

$$x = -2.19$$

$32(2^{2x}) - 7(2^x) = 0$	Deals with power 5 correctly giving ×32	M1
So, $2^x = \frac{7}{32}$	$2^x = \frac{7}{32}$ or $y = \frac{7}{32}$ or awrt 0.219	Al oe
$x \log 2 = \log\left(\frac{7}{32}\right)$ or $x = \frac{\log\left(\frac{7}{32}\right)}{\log 2}$ or $x = \log_2\left(\frac{7}{32}\right)$	A valid method for solving $2^x = \frac{7}{32}$ Or $2^x = k$ to achieve $x =$	
x = -2.192645	awrt −2.19	A1

A1

Question 5

$$y = \frac{1}{16}$$
 or $y = 81$

Let
$$y^{\frac{1}{4}} = x$$

 $2x^2 - 7x + 3 = 0$
 $(2x - 1)(x - 3) = 0$
 $x = \frac{1}{2}, x = 3$
 $y = \left(\frac{1}{2}\right)^4, y = 3^4$
 $y = \frac{1}{16}, y = 81$

M1*

M1dep*

A1

Question 6

$$y = \frac{5}{3}x - 4$$

(b) Gradient of perp. line
$$=\frac{-1}{"(-\frac{3}{5})"}$$
 (Using $-\frac{1}{m}$ with the *m* from part (a)) M1
$$y-1="\left(\frac{5}{3}\right)"(x-3)$$

$$y=\frac{5}{3}x-4$$
 (Must be in this form... allow $y=\frac{5}{3}x-\frac{12}{3}$ but not $y=\frac{5x-12}{3}$)
A1

Question 7

$$V = 28 \,\mathrm{m \, s^{-1}}$$

(c)
$$120 + \frac{1}{2}(V+5).16 + 22V = 1000$$
 M1 B1 A1 Solve: $30V = 840 \Rightarrow V = \underline{28}$ DM1 A1 (5)

Question 8

(a)

$$a = \frac{4}{3}$$

eg
$$8 = -4 + 9a$$

M1

3.4

Use of $v = u + at$ with their u or $s = vt - \frac{1}{2}at^2$ or $v^2 = u^2 + 2as$ with their u
 $a = \frac{4}{3} \text{ (m s}^{-2})$

A1

1.1

Use of $v = u + at$ with their u or $s = vt - \frac{1}{2}at^2$ with their u

Accept 1.33 or better

(b)

$$20.7 \, ms^{-1} \, (1 \, mark)$$

(c)

2 seconds (1 mark)