Mixed Exam Questions - Week 8

Question	1	2	3	4	5	6	7	8	9	Total
Marks										
Max Marks	4	3	4	9	3	4	10	2	5	44

1. (a) Write down the value of p and the value of q given that:
(i) $\sqrt{3}=3^{p}$
(ii) $\frac{1}{9}=3^{q}$
(b) Find the value of x for which $\sqrt{3} \times 3^{x}=\frac{1}{9}$
2. Show that $\frac{5 \sqrt{2}+2}{3 \sqrt{2}+4}$ can be expressed in the form $m+n \sqrt{2}$, where m and n are integers.
3. Determine whether the line with equation $2 x+3 y+4=0$ is parallel to the line through the points with coordinate $(9,4)$ and $(3,8)$.
4.

Figure 1 shows a sketch of the curve with equation $y=\mathrm{f}(x)$. The curve passes through the points $(0,3)$ and $(4,0)$ and touches the x-axis at the point $(1,0)$.

On separate diagrams sketch the curve with equation
(a) $y=\mathrm{f}(x+1)$,
(b) $\quad y=2 \mathrm{f}(x)$,
(c) $\quad y=\mathrm{f}\left(\frac{1}{2} x\right)$.

On each diagram clearly show the coordinates of all the points where the curve meets the axes.
5. \quad Simplify $\frac{\left(4 x^{5} y\right)^{3}}{\left(2 x y^{2}\right) \times\left(8 x^{10} y^{4}\right)}$.
6. The quadratic equation $3 x^{2}+4 x+(2 k-1)=0$ has real and distinct roots.

Find the possible values of the constant k.
Fully justify your answer.
7. The line l_{1} passes through the point $(9,-4)$ and has gradient $\frac{1}{3}$,
(a) Find an equation for l_{1} in the form $a x+b y+c=0$, where a, b and c are integers.

The line l_{2} passes through the origin O and has gradient -2 . The lines l_{1} and l_{2} intersect at the point P.
(b) Calculate the coordinates of P.

Given that l_{1} crosses the y-axis at the point C,
(c) calculate the exact area of $\triangle O C P$.
8. (a) The unit vectors \mathbf{i} and \mathbf{j} are perpendicular.

Find the magnitude of the vector $-20 \mathbf{i}+21 \mathbf{j}$.
Circle your answer.
-1
1
$\sqrt{41}$
29
(b) The angle between the vector \mathbf{i} and the vector $-20 \mathbf{i}+21 \mathbf{j} \mathbf{~ i s ~} \theta$.

Which statement about θ is true?
Circle your answer.

$$
0^{\circ}<\theta<45^{\circ} \quad 45^{\circ}<\theta<90^{\circ} \quad 90^{\circ}<\theta<135^{\circ} \quad 135^{\circ}<\theta<180^{\circ}
$$

9. The graph shows how the speed of a cyclist varies during a timed section of length 120 m along a straight track.
(a) Find the acceleration of the cyclist during the first 10 seconds.

(b) After the first 15 seconds, the cyclist travels at a constant speed of $5 \mathrm{~ms}^{-1}$ for a further T seconds to complete the 120 m section.

Calculate the value of T.

