
Mixed Exam Questions – Week 8 – Mark Scheme

	.			
1 (a)(i)	States correct value of p	AO1.2	B1	$p = \frac{1}{2}$
(a)(ii)	States correct value of q	AO1.2	B1	q = -2
(b)	Uses valid method to find x , PI	AO1.1a	M1	$\frac{1}{2} + x = -2$
	Obtains correct x , ACF	AO1.1b	A1	x = -2.5
	Total		4	
2	Multiplies numerator and denominator by the conjugate surd of the denominator	AO1.1a	M1	$\frac{(5\sqrt{2}+2)(3\sqrt{2}-4)}{(3\sqrt{2}+4)(3\sqrt{2}-4)}$
	Obtains either numerator or denominator correctly, in expanded or simplified form	AO1.1b	A1	$= \frac{30 - 20\sqrt{2} + 6\sqrt{2} - 8}{2}$ $= \frac{22 - 14\sqrt{2}}{2}$
	Constructs rigorous mathematical argument to show the required result	AO2.1	R1	$=11-7\sqrt{2}$
	Only award if they have a completely correct solution, which is clear, easy to follow and contains no slips			
	NMS = 0			
	Total		3	

	Total		4	
	Deduces that the two lines are parallel	AO2.2a	R1	So line with equation $2x + 3y + 4 = 0$ is parallel to the line joining the points with coordinates (9, 4) and (3, 8) as both have gradient $-\frac{2}{3}$
	Finds the gradient of the line through the 2 given points CAO	AO1.1b	B1	Gradient of line through (9, 4) and (3, 8) is $\frac{8-4}{3-9} = -\frac{2}{3}$
	Finds the gradient of the given line CAO	AO1.1b	B1	$2x + 3y + 4 = 0 \Rightarrow y = -\frac{2}{3}x - \frac{4}{3}$ So gradient is $-\frac{2}{3}$
3	Explains that equal gradients implies that lines are parallel	AO2.4	E1	Parallel lines have equal gradient
	-			

5		$4x^4y^{-3}$ or $\frac{4x^4}{y^3}$ as final answer	3	B1 each 'term'; or M1 for numerator = $64x^{15}y^3$ and M1 for denominator = $16x^{11}y^6$
			[3]	

6	Forms discriminant – condone one error in discriminant	AO1.1a	M1	for distinct real roots, disc > 0 $4^{2}-4\times3\times(2k-1)>0$
	States that discriminant > 0 for real and distinct roots	AO2.4	R1	16 - 12(2k - 1) > 0 $28 - 24k > 0$
	Forms an inequality from 'their' discriminant	AO1.1a	M1	$k < \frac{7}{6}$
	Solves inequality for <i>k</i> correctly Allow un-simplified equivalent fraction	AO1.1b	A1	
	Total		4	

7 (a)	$y - (-4) = \frac{1}{3}(x - 9) \text{or} \frac{y - (-4)}{x - 9} = \frac{1}{3}$ $3y - x + 21 = 0 \text{(o.e.) (condone 3 terms with integer coefficients e.g. } 3y + 21 = x)$	M1 A1
		(3)
(b)	Equation of l_2 is: $y = -2x$ (o.e.) Solving l_1 and l_2 : $-6x - x + 21 = 0$	B1 M1
	p is point where $x_p = 3$, $y_p = -6$ x_p or y_p	Alft (2x)
	y_p or x_p	Alf.t. $(-2x)$
		(4)
(c)	$(l_1 \text{ is } y = \frac{1}{3}x - 7)$ C is $(0, -7)$ or OC = 7	
		B1f.t.
	Area of $\triangle OCP = \frac{1}{2}OC \times x_p$, $= \frac{1}{2} \times 7 \times 3 = 10.5$ or $\frac{21}{2}$	M1 A1c.a.o.
ALT	By Integration: M1 for $\pm \int_{-\infty}^{x_p} (l_1 - l_2) dx$,	(3)
	0	(10)
	B1 ft for correct integration (follow through their l_1), then A1cao.	

Q	Marking Instructions	AO	Marks	Typical Solution
8 (a)	Circles correct answer	AO1.1b	B1	29
(b)	Circles correct answer	AO2.2a	B1	90° < θ < 135°
	Total		2	
9 (a)	Finds correct acceleration	AO1.1b	B1	0.5 m s ⁻²
(b)	Identifies $5T$ as the distance travelled after the first 15 seconds	AO3.4	B1	Distance at constant speed = $5T$
	Uses the information given to form an equation to find T (award mark for either trapezium expression separate, totalled or implied)	AO3.1b	M1	Distance in first 15 secs = $\frac{1}{2} \times (3+8) \times 10 + \frac{1}{2} \times (8+5) \times 5$ = $55 + 32.5 = 87.5$ $5T + 87.5 = 120$
	Correctly calculates the distance for the first 15 secs	AO1.1b	A1	So <i>T</i> = 6.5
	Deduces the values of T from the mathematical models applied	AO2.2a	A1	
	Total		5	