Mixed Exam Questions - Week 8 - Mark Scheme

1 (a)(i)	States correct value of p	AO1.2	B1	$p=\frac{1}{2}$
(a)(ii)	States correct value of q	AO1.2	B1	$q=-2$
(b)	Uses valid method to find x, PI	AO1.1a	M1	$\frac{1}{2}+x=-2$
	Obtains correct x, ACF	AO1.1b	A1	$x=-2.5$
		Total		4

2	Multiplies numerator and denominator by the conjugate surd of the denominator	A01.1a	M1	$\frac{(5 \sqrt{2}+2)(3 \sqrt{2}-4)}{(3 \sqrt{2}+4)(3 \sqrt{2}-4)}$
	Obtains either numerator or denominator correctly, in expanded or simplified form	A01.1b	A1	$\begin{aligned} & =\frac{30-20 \sqrt{2}+6 \sqrt{2}-8}{2} \\ & =\frac{22-14 \sqrt{2}}{2} \end{aligned}$
	Constructs rigorous mathematical argument to show the required result Only award if they have a completely correct solution, which is clear, easy to follow and contains no slips $\text { NMS = } 0$	AO2.1	R1	$=11-7 \sqrt{2}$
	Total		3	

3	Explains that equal gradients implies that lines are parallel	AO2.4	E1	Parallel lines have equal gradient Finds the gradient of the given line CAO

| 5 | $4 x^{4} y^{-3}$ or $\frac{4 x^{4}}{y^{3}}$ as final answer | 3
 [3] |
| :--- | :--- | :--- | :--- | :--- |

6	Forms discriminant - condone one error in discriminant	AO 1.1 a	M 1	for distinct real roots, disc >0
	States that discriminant >0 for real and distinct roots	AO 2.4	R 1	$16-12(2 k-1)>0$

7 (a)
$y-(-4)=\frac{1}{3}(x-9) \quad$ or $\quad \frac{y-(-4)}{x-9}=\frac{1}{3}$
$3 y-x+21=0 \quad$ (o.e.) (condone 3 terms with integer coefficients e.g. $3 y+21=x$)
(3)
(b) Equation of l_{2} is: $y=-2 x \quad$ (o.e.)

Solving l_{1} and $l_{2}: \quad-6 x-x+21=0$
p is point where $x_{p}=3, \quad y_{p}=-6$

$$
x_{p} \text { or } y_{p}
$$

y_{p} or x_{p}
M1 A1

B1
M1
A1
Alf.t. $(-2 x)$
(4)
(c)
$\left(l_{1}\right.$ is $\left.y=\frac{1}{3} x-7\right) \quad \mathrm{C}$ is $(0,-7) \quad$ or $\quad \mathrm{OC}=7$
Area of $\triangle O C P=\frac{1}{2} O C \times x_{p},=\frac{1}{2} \times 7 \times 3=10.5$ or $\frac{21}{2}$
ALT
By Integration: M1 for $\pm \int_{0}^{x_{P}}\left(l_{1}-l_{2}\right) d x$,
B 1 ft for correct integration (follow through their l_{1}), then A1cao.

Q	Marking Instructions	AO	Marks	Typical Solution
8 (a)	Circles correct answer	A01.1b	B1	29
(b)	Circles correct answer	AO2.2a	B1	$90^{\circ}<\theta<135^{\circ}$
	Total		2	
9 (a)	Finds correct acceleration	A01.1b	B1	$0.5 \mathrm{~m} \mathrm{~s}^{-2}$
(b)	Identifies $5 T$ as the distance travelled after the first 15 seconds	AO3.4	B1	Distance at constant speed $=5 T$ Distance in first 15 secs $=$ $\begin{aligned} & \frac{1}{2} \times(3+8) \times 10+\frac{1}{2} \times(8+5) \times 5 \\ & =55+32.5=87.5 \\ & 5 T+87.5=120 \end{aligned}$ So $T=6.5$
	Uses the information given to form an equation to find T (award mark for either trapezium expression separate, totalled or implied)	A03.1b	M1	
	Correctly calculates the distance for the first 15 secs	A01.1b	A1	
	Deduces the values of T from the mathematical models applied	AO2.2a	A1	
	Total		5	

