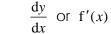
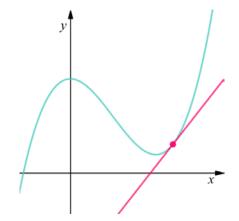
Y1 DIFFERENTIATION 1


lesson link: parkermaths.com/y1diff


[∕] ⊟ Objective

- Understand and use the gradient function.
- To differentiate functions of the form f(x) = a, f(x) = kx and $f(x) = x^n$, where a and k are constants.

2.1 The Gradient Function

The **gradient** at a given point is defined as the gradient of the **tangent** to the curve at that point. The **gradient function**, or **derivative**, of the curve y = f(x), is written as

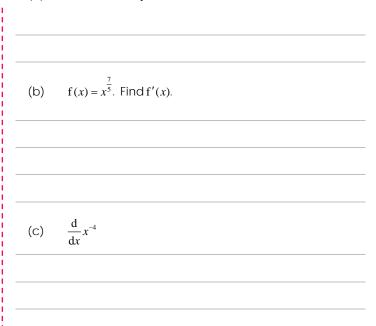
2.2 Rules for Differentiation

Function	Gradient Function (Derivative)	Example	
y = a	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	$y=5$, $\frac{\mathrm{d}y}{\mathrm{d}x}=0$	The gradient of a horizontal line is O.
y = kx	$\frac{\mathrm{d}y}{\mathrm{d}x} = k$	$y = 3x$, $\frac{dy}{dx} = 3$	y = kx is a straight line with gradient k
$y = x^n$	$\frac{\mathrm{d}y}{\mathrm{d}x} = nx^{n-1}$	$y = x^3$, $\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2$	

Examples: Rules for Differentiation

2.2e.

- (a) Differentiate $y = x^5$ multiply by the power $\frac{dy}{dx} = 5x^4$ subtract 1 from the power
- (b) $f(x) = x^{-2}$. Find f'(x).


$$f'(x) = -2x^{-1}$$

(c) $\frac{d}{dx}x^{\frac{1}{3}}$ $\frac{d}{dx}x^{\frac{1}{3}} = \frac{1}{3}x^{-\frac{2}{3}}$ This last step it not strictly necessary, but it is often useful to rewrite your answer in this form

2.2p.

(a) Differentiate $y = x^7$

Y1 PURE → DIFFERENTIATION

2.3e. (a) Find the gradient of the curve $y = x^2$ at the where point x = -2.

This means 'evaluate the $\frac{dy}{dx} = 2x$ derivative at x = -2' $\frac{dy}{dx}\Big|_{x=-2} = 2(-2)$

> (b) Find the gradient of the curve $f(x) = x^{\frac{1}{2}}$ at the point where x = 9.

= -4

$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2x^{\frac{1}{2}}}$$
$$f'(9) = \frac{1}{2(9)^{\frac{1}{2}}} = \frac{1}{6}$$

2.3e. (a) Find the gradient of the curve $y = x^4$ at the where point x = 1.

(b) Find the gradient of the curve $f(x) = x^{-1}$ at the point where x = 3.

$$\frac{\mathrm{d}}{\mathrm{d}x}kf(x) = k\frac{\mathrm{d}}{\mathrm{d}x}f(x) \quad , \quad \frac{\mathrm{d}}{\mathrm{d}x}\left[f(x)\pm g(x)\right] = \frac{\mathrm{d}}{\mathrm{d}x}f(x) + \frac{\mathrm{d}}{\mathrm{d}x}g(x)$$

2.4e. Find the derivative of (a) $f(x) = \frac{1}{2}x^{3}$ $f'(x) = \frac{3}{2}x^{3}$ (b) $y = x^{\frac{1}{2}} + x^{-3} - 2$ $\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}} - 3x^{-4}$ (c) $f(x) = 2x^{3} - 4x^{\frac{3}{2}} - 9x + 2x^{-1}$ $f'(x) = 6x^{2} - 6x^{\frac{1}{2}} - 9 - 2x^{-2}$ 2.5e. (a) $f(x) = 6\sqrt{x} - \frac{5}{x^{4}}$. Find f'(x).

 $f(x) = 6x^{\frac{1}{2}} - 5x^{-4}$ We first 'prepare' the equation for differentiation. $f'(x) = 3x^{-\frac{1}{2}} + 20x^{-5}$

(b)
$$y = 2x\sqrt{x} - \frac{8}{\sqrt[3]{x}} + \frac{2}{3x}$$
. Find $\frac{dy}{dx}$.
 $y = 2x^{\frac{3}{2}} - 8x^{-\frac{1}{3}} + \frac{2}{3}x^{-1}$
 $\frac{dy}{dx} = 3x^{\frac{1}{2}} + \frac{8}{3}x^{-\frac{4}{3}} - \frac{2}{3}x^{-2}$

2.4e. Find the derivative of

(a) $f(x) = 2x^5$

(b)
$$y = x^{-2} + x^{\frac{1}{4}} + 6x$$

(c)
$$f(x) = \frac{1}{4}x^2 - 3x^{\frac{5}{2}} + x^{\frac{1}{3}} + 5$$

2.5e. (a) $y = \sqrt[3]{x} - \frac{2}{x}$. Find $\frac{dy}{dx}$.

(b)
$$f(x) = \frac{4}{\sqrt{x}} - x^2 \sqrt{x} + \frac{7x}{3\sqrt{x}}$$
. Find $f'(x)$

parkermaths.com/tuition PM