Objectives

- To solve simultaneous equations in two variables, including one linear and one non-linear equation.
- To understand the relationship between the algebraic solutions of simultaneous equations and the points of intersection on the corresponding graphs.

Examples

6.1e. Solve the following linear simultaneous equations:

$$3x - 5y - 19 = 0$$

$$5x = 6y + 27$$

$$3x - 5y = 19$$

$$5x - 6y = 27$$
 ②

(3)

$$15x - 25y = 95$$

$$15x - 18y = 81$$

$$(3) - (4)$$

$$-7y = 14$$

$$y = -2$$

Sub y = -2 into ①:

$$3x - 5(-2) = 19$$

$$3X = 9$$

$$X = 3$$

6.1p. Solve the following linear simultaneous equations:

$$7x = 2y + 1$$

$$10x + 7y = 31$$

When solving linear simultaneous equations, it is generally acceptable to do so directly using your calculator.

6.2e. Use your calculator to solve the following linear simultaneous equations:

$$x = -\frac{4}{3} , y = \frac{1}{3} (BC)$$

(b)
$$9a+11=5b$$

$$10a + 8b + 19 = 0$$

$$a = -\frac{3}{2}$$
, $b = -\frac{1}{2}$ (BC)

$$10a + 8b = -19$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \chi \qquad \gamma$$

6.2p. Use your calculator to solve the following linear simultaneous equations:

(a)
$$7x - 3y = -4$$

$$6x + 4y = 13$$

(b)
$$14 + 5p = -7q$$

$$10q + 17 = -8p$$

6.3e. Solve the following non-linear simultaneous equations:

$$2x^2 - xy - y^2 = 36$$
$$x + 2y = 9$$

$$2x^2 - xy - y^2 = 36$$

$$x + 2y = 9$$

$$x = 9 - 2y$$
 2

Sub (2) into (1):

$$2(9-2y)^2-(9-2y)y-y^2=36$$

$$2(81 - 36y + 4y^2) - 9y + 2y^2 - y^2 = 36$$

$$162 - 72y + 8y^2 - 9y + 2y^2 - y^2 = 36$$

$$9y^2 - 81y + 126 = 0$$

$$y^2 - 9y + 14 = 0$$

$$(y-7)(7-2)=0$$

$$\therefore y = 2 \text{ or } y = 7$$

Sub
$$y = 2$$
 into (2) :

$$X = 9 - 2(2) = 5$$

Sub
$$y = 7$$
 into $②$:

$$X = 9 - 2(7) = -5$$

$$x = 5, y = 2 \text{ and } x = -5, y = 7$$

6.4e. Find the *x*-coordinates of the points of intersection between the curve $y = 2x^2 - 4x - 3$ and the line 3y - 2x = 8.

$$3y - 2x = 8$$

$$3y = 2x + 8$$

$$y = \frac{2}{3}x + \frac{8}{3}$$

$$\therefore \quad \frac{2}{3}x + \frac{8}{3} = 2x^2 - 4x - 3$$

$$2x + 8 = 6x^2 - 12x - 9$$

$$0 = 6x^2 - 14x - 17$$

$$\therefore \qquad \chi = \frac{7 \pm \sqrt{151}}{6}$$

6.3p. Solve the following non-linear simultaneous equations:

$$2x^2 + xy + y^2 = 22$$
$$x + 2y = 5$$

6.4p. Find the *x*-coordinates of the points of intersection between the curve $y = 4 + 5x - 2x^2$ and the line 3x + y = 1.

y	*	
	<u> </u>	