Mixed questions Co-ordinate Geometry – Straight lines

1*. The points P and Q have coordinates (-1, 6) and (9, 0) respectively.

The line l is perpendicular to PQ and passes through the mid-point of PQ.

Find an equation for l, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(Total 5 marks)

2*.

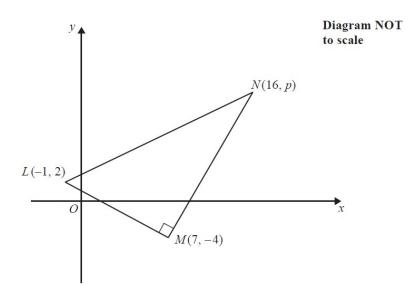


Figure 1

Figure 1 shows a right angled triangle LMN.

The points L and M have coordinates (-1, 2) and (7, -4) respectively.

(a) Find an equation for the straight line passing through the points L and M.

Give your answer in the form ax + by + c = 0, where a, b and c are integers.

(4)

Given that the coordinates of point N are (16, p), where p is a constant, and angle $LMN = 90^{\circ}$,

(b) find the value of p.

(3)

Given that there is a point K such that the points L, M, N, and K form a rectangle,

(c) find the y coordinate of K.

(2)

(Total 9 marks)

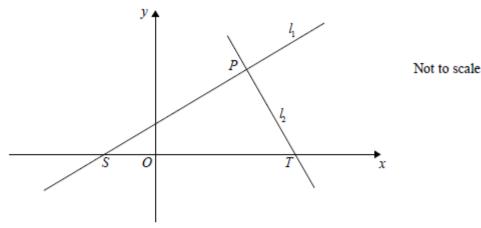


Figure 1

The straight line l_1 , shown in Figure 1, has equation 5y = 4x + 10

The point P with x coordinate 5 lies on l_1

The straight line l_2 is perpendicular to l_1 and passes through P.

(a) Find an equation for l_2 , writing your answer in the form ax + by + c = 0 where a, b and c are integers.

(4)

The lines l_1 and l_2 cut the x-axis at the points S and T respectively, as shown in Figure 1.

(b) Calculate the area of triangle SPT.

(4)

(Total 8 marks)

Question 4

The vertices of a triangle are the points A(5, 4), B(-5, 8) and C(1, 11).

- a Find the equation of the straight line passing through A and B, giving your answer in the form ax + by + c = 0, where a, b and c are integers.
- **b** Find the coordinates of the point M, the mid-point of AC.

6 marks

Question 5

The point A has coordinates (-8, 1) and the point B has coordinates (-4, -5).

- a Find the equation of the straight line passing through A and B, giving your answer in the form ax + by + c = 0, where a, b and c are integers.
- **b** Show that the distance of the mid-point of *AB* from the origin is $k\sqrt{10}$ where *k* is an integer to be found.

6 marks

Total: 40 marks

Answers

Question	Scheme	Marks
1	Mid-point of PQ is (4, 3)	B1
	PQ: $m = \frac{0-6}{9-(-1)}$, $\left(=-\frac{3}{5}\right)$	B1
	Gradient perpendicular to $PQ = -\frac{1}{m} (=\frac{5}{3})$	M1
	$y-3=\frac{5}{3}(x-4)$	M1
	5x-3y-11=0 or $3y-5x+11=0$ or multiples e.g. $10x-6y-22=0$	A1
		(5 marks)
2(a)	Method 1 Method 2	M1 A1
	$y-2=-\frac{3}{4}(x+1)$ or $y+4=-\frac{3}{4}(x-7)$ or $y=their'-\frac{3}{4}'x+c$	M1
	$\Rightarrow \pm (4y + 3x - 5) = 0$	A1
	Method 3: Substitute $x = -1$, $y = 2$ and $x = 7$, $y = -4$ into $ax + by + c = 0$	M1
	-a + 2b + c = 0 and $7a - 4b + c = 0$	A1
	Solve to obtain $a = 3$, $b = 4$ and $c = -5$ or multiple of these numbers	M1 A1
1		(4)
2(b)	Attempts $gradient \ LM \times gradient \ MN = -1 $ so $Or \ (y+4) = \frac{4}{3}(x-7)$ equation with $-\frac{3}{4} \times \frac{p+4}{16-7} = -1$ or $\frac{p+4}{16-7} = \frac{4}{3}$ $x = 16$ substituted	M1
	$p+4=\frac{9\times 4}{3} \Rightarrow p=\dots, p=8 \text{So } y=, y=8$	M1 A1
		(3)
2(c)	Either $(y=)$ $p+6$ or $2+p+4$ Or use 2 perpendicular line equations through L and N and solve for y	M1
	(y =) 14	A1
		(2)
		(9 marks)

3(a)	Gradient of $l_1 = \frac{4}{5}$ oe	B1
	Point $P = (5, 6)$	B1
	$-\frac{5}{4} = \frac{y - 6}{x - 5}$	
	or $y - 6'' = -\frac{5}{4}(x - 5)$	M1
	or "6" = $-\frac{5}{4}(5) + c \Rightarrow c = \dots$	
	1	
	5x + 4y - 49 = 0	A1 (4)
3(b)	$y = 0 \Rightarrow 5x + 4(0) - 49 = 0 \Rightarrow x = \dots$	
	or $y = 0 \Rightarrow 5(0) = 4x + 10 \Rightarrow x = \dots$	M1
	$y = 0 \Rightarrow 5x + 4(0) - 49 = 0 \Rightarrow x = \dots$	M1
	and $y = 0 \Rightarrow 5(0) = 4x + 10 \Rightarrow x =$	
	Method 1: $\frac{1}{2}ST \times "6"$	
	$\frac{1}{2} \times ('9.8' - '-2.5') \times '6' = \dots$	
	Method 2: $\frac{1}{2}SP \times PT$	
	$\frac{1}{2} \times \sqrt{(5 2.5')^2 + ('6')^2} \times \sqrt{('9.8' - 5)^2 + ('6')^2} = \dots$	
	$\left(=\frac{1}{2}\times\frac{3\sqrt{41}}{2}\times\frac{6\sqrt{41}}{5}\right)$	ddM1
	Method 3: 2 Triangles	
	$\frac{1}{2} \times (5 + 2.5) \times 6 + \frac{1}{2} \times (9.8 - 5) \times 6 = \dots$	
	Method 4: Shoelace method	
	$ \frac{1}{2} \begin{vmatrix} 5 & 9.8 & -2.5 & 5 \\ 6 & 0 & 0 & 6 \end{vmatrix} = \frac{1}{2} (0+0-15) - (58.8+0+0) = \frac{1}{2} -73.8 = \dots $	
	Method 5: Trapezium + 2 triangles	
	$\frac{1}{2} \times ('2.5') \times '2' + \frac{1}{2} ("2" + "6") \times 5 + \frac{1}{2} \times ("9.8" - 5') \times '6' = \dots$	
	= 36.9	A1
		(4)
		(8 marks)

Question 4 (6 marks)

a grad =
$$\frac{8-4}{-5-5} = -\frac{2}{5}$$

$$\therefore y - 4 = -\frac{2}{5}(x - 5)$$

$$5y - 20 = -2x + 10$$

$$2x + 5y - 30 = 0$$

b
$$M = (\frac{5+1}{2}, \frac{4+11}{2}) = (3, 7\frac{1}{2})$$

Question 5 (6 marks)

a grad =
$$\frac{-5-1}{-4+8} = -\frac{3}{2}$$

$$y - 1 = -\frac{3}{2}(x + 8)$$

$$2y - 2 = -3x - 24$$

$$3x + 2y + 22 = 0$$

b mid-point =
$$(\frac{-8-4}{2}, \frac{1-5}{2}) = (-6, -2)$$

$$distance = \sqrt{6^2 + 2^2} = \sqrt{40}$$

$$= 2\sqrt{10}$$
 [$k = 2$]