

i	<p>State range of f is $f(x) \geq 3a$ or $y \geq 3a$</p> <p>State range of g is all real numbers or equiv such as $y \in \mathbb{R}$ (real numbers)</p>	B1 B1 [2]	<p>Allow $f \geq 3a$ or equiv expression in words but $3a$ to be included</p>
----------	--	--	---

Question		Answer	Marks	Guidance
ii	<p>State function is not 1 – 1 or different x-values give same y-value or equiv</p> <p>Obtain form $k(y+4a)$ or $k(x+4a)$</p> <p>Obtain $\frac{1}{5}(x+4a)$ or $\frac{1}{5}x + \frac{4}{5}a$</p>	B1 M1 A1 [3]	<p>no credit for ‘no inverse due to modulus’ nor for ‘cannot be reflected across $y = x$’ for non-zero constant k</p> <p>Must finally be in terms of x</p>	
iii	<p><u>Either</u> Attempt composition of functions the right way round</p> <p>Obtain $5 2x+a + 11a = 31a$ or equiv</p> <p><u>Or</u> Apply their g^{-1} to $31a$</p> <p>Obtain $2x+a + 3a = 7a$ or equiv</p> <p><u>Either</u> Solve $2x+a = 4a$ and obtain $\frac{3}{2}a$</p> <p>Solve linear equation in which signs of (their) $2x$ and (their) $4a$ are different</p> <p>Obtain $-\frac{5}{2}a$</p> <p><u>Or</u> Square both sides and obtain $4x^2 + 4ax - 15a^2 = 0$</p> <p>Solve 3-term quadratic equation to obtain two values</p> <p>Obtain $-\frac{5}{2}a, \frac{3}{2}a$</p>	M1 A1 M1 A1 B1 FT M1 A1 B1 FT M1 A1 [5]	<p>Earned for 5 (what they think $f(x)$ is) – $4a$</p> <p>Following their $2x+a = ka$</p> <p>Condone other sign slips</p> <p>And no others; obtaining $-\frac{5}{2}a$ and then concluding $\frac{5}{2}a$ is A0</p> <p>Following their $2x+a = ka$</p> <p>Allow M1 if factorisation wrong but expansion gives correct first and third terms; allow M1 if incorrect use of formula involves only one error</p> <p>And no others; continuing from two correct answers to conclude $\frac{5}{2}a, \frac{3}{2}a$ is A0</p>	