

(i) $\tan 2x = \frac{1}{3}$
 $2x = 18.4^\circ, 198.4^\circ$
 $x = 9.22^\circ, 99.2^\circ$

	M1	Attempt correct solution method	Attempt $\tan^{-1}(\frac{1}{3})$ and then halve answer.
	A1	Obtain one of 9.22° or 99.2° , or better	Allow radian equiv (0.161 or 1.73).
	A1ft	3 Obtain second correct angle	Maximum of 2 marks if angles not in degrees. A0 if extra solutions in given range, but ignore extra outside range If M1 A0 given, award A1ft for adding 90° or $\pi/2$ to their angle.
			SR: if no working shown then allow B1 for each correct solution. Maximum of B1 if in radians, or extra solutions in given range.

SR: if using $\tan 2x$ identity then...
M1 Attempt to find x from solving quadratic equation in $\tan 2x$, derived from correct $\tan 2x$ identity.
A1 Obtain at least one of 9.22° or 99.2° , or better (or radian equiv)
A1 Obtain second correct angle

(ii) $3(1 - \sin^2 x) + 2\sin x - 3 = 0$
 $3\sin^2 x - 2\sin x = 0$
 $\sin x(3\sin x - 2) = 0$
 $\sin x = 0, \sin x = \frac{2}{3}$
 $x = 0^\circ, 180^\circ, x = 41.8^\circ, 138^\circ$

	M1	Use $\cos^2 x = 1 - \sin^2 x$, aef	Must be used not just stated. Must be used correctly, so $1 - 3\sin^2 x$ is M0.
	A1	Obtain $3\sin^2 x - 2\sin x = 0$	Allow aef, but must be simplified (ie no constant term; allow 0).
	M1	Attempt to solve equation to find solutions for x	Not dependent on first M1 so could get M0 M1 if $\cos^2 x = \sin^2 x - 1$ previously used. Must be quadratic in $\sin x$ (must have $\sin x$ term), but can still get M1 if constant term in their quadratic as well. Candidates need to be solving for x , so need to \sin^{-1} at least one of the solutions to their quadratic. Must be acceptable method – if factorising then it must give correct lead term and one other on expansion (inc $c = 0$), if using formula then allow sign slips but no other errors. SR If solving the quadratic involves cancelling by $\sin x$ rather than factorising then M0, but give B1 if both 41.8° and 138° found (or radian equivs)
	A1	Obtain two of $0^\circ, 180^\circ, 41.8^\circ, 138^\circ$	Must come from correct factorisation of correct quadratic equation ie $\sin x(3\sin x + 2) = 0$ leading to $\sin x = 0$ and hence $x = 0^\circ, 180^\circ$ is A0. Allow radian equivs – $0, \pi$ (or 3.14), 0.73 , 2.41 .
	A1	5 Obtain all four angles	Must now all be in degrees, with no extra in given range (ignore any outside range). SR If no working out seen, then allow B1 for each of 41.8° and 138° , and B1 for both 0° and 180° . Maximum of B2 if in radians or extra solutions in given range.